Sea Spray Generation in Very High Winds

David G. Ortiz-Suslow Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David G. Ortiz-Suslow in
Current site
Google Scholar
PubMed
Close
,
Brian K. Haus Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian K. Haus in
Current site
Google Scholar
PubMed
Close
,
Sanchit Mehta Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Sanchit Mehta in
Current site
Google Scholar
PubMed
Close
, and
Nathan J. M. Laxague Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Nathan J. M. Laxague in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Quantifying the amount and rate of sea spray production at the ocean surface is critical to understanding the effect spray has on atmospheric boundary layer processes (e.g., tropical cyclones). Currently, only limited observational data exist that can be used to validate available droplet production models. To help fill this gap, a laboratory experiment was conducted that directly observed the vertical distribution of spume droplets above actively breaking waves. The experiments were carried out in hurricane-force conditions (10-m equivalent wind speed of 36–54 m s−1), and the observed particles ranged in radius r from 80 to nearly 1400 μm. High-resolution profiles (3 mm) were reconstructed from optical imagery taken within the boundary layer, ranging from 2 to 6 times the local significant wave height. Number concentrations were observed to have a radius dependence proportional to r−3 leading to spume production estimates that diverge from typical source models, which tend to exhibit a radius falloff closer to r−8. This was particularly significant for droplets with radii circa 1 mm whose modeled production rates were several orders of magnitude less than the rates expected from the observed concentrations. The vertical dependence of the number concentrations was observed to follow a logarithmic profile, which does not confirm the power-law relationship expected by a conventional spume generation parameterization. These observations bear significant implications for efforts to characterize the role these large droplets play in boundary layer processes under high-wind conditions.

Corresponding author address: David G. Ortiz-Suslow, Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. E-mail: dortiz-suslow@rsmas.miami.edu

Abstract

Quantifying the amount and rate of sea spray production at the ocean surface is critical to understanding the effect spray has on atmospheric boundary layer processes (e.g., tropical cyclones). Currently, only limited observational data exist that can be used to validate available droplet production models. To help fill this gap, a laboratory experiment was conducted that directly observed the vertical distribution of spume droplets above actively breaking waves. The experiments were carried out in hurricane-force conditions (10-m equivalent wind speed of 36–54 m s−1), and the observed particles ranged in radius r from 80 to nearly 1400 μm. High-resolution profiles (3 mm) were reconstructed from optical imagery taken within the boundary layer, ranging from 2 to 6 times the local significant wave height. Number concentrations were observed to have a radius dependence proportional to r−3 leading to spume production estimates that diverge from typical source models, which tend to exhibit a radius falloff closer to r−8. This was particularly significant for droplets with radii circa 1 mm whose modeled production rates were several orders of magnitude less than the rates expected from the observed concentrations. The vertical dependence of the number concentrations was observed to follow a logarithmic profile, which does not confirm the power-law relationship expected by a conventional spume generation parameterization. These observations bear significant implications for efforts to characterize the role these large droplets play in boundary layer processes under high-wind conditions.

Corresponding author address: David G. Ortiz-Suslow, Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. E-mail: dortiz-suslow@rsmas.miami.edu
Save
  • Andreas, E. L, 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 99, 11 42911 441, doi:10.1029/92JC00876.

  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, doi:10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

  • Andreas, E. L, 2005: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75, 323345, doi:10.1016/j.atmosres.2005.02.001.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 1999: Air-Sea Exchange: Physics, Chemistry and Dynamics. G. L. Geernaert, Ed., Atmospheric and Oceanographic Sciences Library, Vol. 20, Springer, 574 pp., doi:10.1007/978-94-015-9291-8.

  • Andreas, E. L, and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, doi:10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103, 303333, doi:10.1023/A:1014564513650.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and L. Mahrt, 2015: On the prospects for observing spray-mediated air–sea transfer in wind–water tunnels. J. Atmos. Sci., 73, 185198, doi:10.1175/JAS-D-15-0083.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, doi:10.1007/BF00712389.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, doi:10.1175/2007JPO3813.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. F. Jones, and C. W. Fairall, 2010: Production velocity of sea spray droplets. J. Geophys. Res., 115, C12065, doi:10.1029/2010JC006458.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M., R. P. Barber, and J. Wu, 1999: Spume drops produced by the wind tearing of wave crests. J. Phys. Oceanogr., 29, 11561165, doi:10.1175/1520-0485(1999)029<1156:SDPBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., J. Chorin, and V. M. Prostokishin, 2005: A note concerning the Lighthill “sandwich model” of tropical cyclones. Proc. Natl. Acad. Sci. USA, 102, 11 14811 150, doi:10.1073/pnas.0505209102.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., and A. D. Jenkins, 2006: Drag coefficient reduction at very high wind speeds. J. Geophys. Res., 111, C03024, doi:10.1029/2005JC003114.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., and J.-O. Wolff, 2008: Charnock dynamics: A model for the velocity structure in the wave boundary layer of the air–sea interface. Ocean Dyn., 58, 3142, doi:10.1007/s10236-007-0130-5.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Clift, R., and W. H. Gauvin, 1971: Motion of entrained particles in gas streams. Can. J. Chem. Eng., 49, 439448, doi:10.1002/cjce.5450490403.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043〈0585:AASITF〉2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: A similarity hypothesis for air–sea exchange at extreme wind speeds. J. Atmos. Sci., 60, 14201428, doi:10.1175/1520-0469(2003)060<1420:ASHFAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. Kepert, and G. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748, doi:10.1175/JAS-D-11-0260.1.

    • Search Google Scholar
    • Export Citation
  • Jones, K. F., and E. L Andreas, 2012: Sea spray concentrations and the icing of fixed offshore structures. Quart. J. Roy. Meteor. Soc., 138, 131144, doi:10.1002/qj.897.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., C. Fairall, and J. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. Geernaert, Ed., Atmospheric and Oceanographic Sciences Library, Vol. 20, Springer, 363–409, doi:10.1007/978-94-015-9291-8.

  • Lewis, E. R., and S. E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review. Geophys. Monogr., Vol. 152, Amer. Geophys. Union, 413 pp.

  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, doi:10.1023/A:1004383430896.

  • Lykossov, V., 2001: Atmospheric and oceanic boundary layer physics. Wind Stress Over the Ocean, 1st ed., I. Jones and Y. Toba, Eds., Cambridge University Press, 54–81, doi:10.1017/CBO9780511552076.004.

  • Marmottant, P., and E. Villermaux, 2004: On spray formation. J. Fluid Mech., 498, 73111, doi:10.1017/S0022112003006529.

  • Melville, W. K., 1996: The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: Oceanic Whitecaps. Oceanographic Sciences Library, Vol. 2, Springer, 167–174 pp., doi:10.1007/978-94-009-4668-2.

  • Mueller, J. A., and F. Veron, 2009: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372, doi:10.1175/2009JPO4113.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air-sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, doi:10.1175/JPO-D-13-0245.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1955: Wind stress on water: An hypothesis. Quart. J. Roy. Meteor. Soc., 81, 320332, doi:10.1002/qj.49708134903.

  • Norris, S. J., I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, 2012: Field measurements of aerosol production from whitecaps in the open ocean. Ocean Sci. Discuss., 9, 33593392, doi:10.5194/osd-9-3359-2012.

    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., B. K. Haus, S. Mehta, and N. J. M. Laxague, 2016: A laboratory study of spray generation in high winds. IOP Conf. Ser.: Earth Environ. Sci., 35, 012008, doi:10.1088/1755-1315/35/1/012008.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and T. J. Lee, 1991: Influence of sea spray and rainfall on the surface wind profile during conditions of strong winds. Bound.-Layer Meteor., 55, 305308, doi:10.1007/BF00122582.

    • Search Google Scholar
    • Export Citation
  • Potter, H., H. C. Graber, N. J. Williams, C. O. Collins, R. J. Ramos, and W. M. Drennan, 2015: In situ measurements of momentum fluxes in typhoons. J. Atmos. Sci., 72, 104118, doi:10.1175/JAS-D-14-0025.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air–sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, doi:10.1002/2014GL059746.

    • Search Google Scholar
    • Export Citation
  • Rouault, M. P., P. G. Mestayer, and R. Schiestel, 1991: A model of evaporating spray droplet dispersion. J. Geophys. Res., 96, 7181, doi:10.1029/90JC02569.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2014: The air–sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, doi:10.1038/srep05306.

    • Search Google Scholar
    • Export Citation
  • Stiassnie, M., 2012: Fetch-limited growth of wind waves. J. Geophys. Res., 117, C00J04, doi:10.1029/2011JC007579.

  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, doi:10.1146/annurev-fluid-010814-014651.

  • Veron, F., C. Hopkins, E. L Harrison, and J. A. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett., 39, L16602, doi:10.1029/2012GL052603.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1972: A note on surface roughness and resistance coefficient of sea ice. J. Geophys. Res., 77, 32723277, doi:10.1029/JC077i018p03272.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1979: Spray in the atmospheric surface layer: Review and analysis of laboratory and oceanic results. J. Geophys. Res., 84, 16931704, doi:10.1029/JC084iC04p01693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 934 354 27
PDF Downloads 656 212 15