Orographic Influence on Basic Flow and Cyclone Circulation and Their Impacts on Track Deflection of an Idealized Tropical Cyclone

Yuh-Lang Lin Department of Physics, and Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina

Search for other papers by Yuh-Lang Lin in
Current site
Google Scholar
PubMed
Close
,
Shu-Hua Chen Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Shu-Hua Chen in
Current site
Google Scholar
PubMed
Close
, and
Liping Liu Department of Mathematics, North Carolina A&T State University, Greensboro, North Carolina

Search for other papers by Liping Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A series of idealized numerical experiments and vorticity budget analyses is performed to examine several mechanisms proposed in previous studies to help understand the orographic influence on track deflection over a mesoscale mountain range. When an idealized tropical cyclone (TC) is embedded in a uniform, easterly flow and passes over a mountain with a moderate Froude number, it is deflected to the south upstream, moves over the mountain anticyclonically, and then resumes its westward movement. The vorticity budget analysis indicates that the TC movement can be predicted by the maximum vorticity tendency (VT). The orographic effects on the above TC track deflection are explained by the following: 1) Upstream of the mountain, the easterly basic flow is decelerated as a result of orographic blocking that causes the flow to become subgeostrophic, which advects the TC to the southwest, analogous to the advection of a point vortex embedded in a flow. The VT is primarily dominated by the horizontal vorticity advection. 2) The TC passes over the mountain anticyclonically, mainly steered by the orographically generated high pressure. This makes the TC move southwestward (northwestward) over the upslope (lee slope). The VT is mainly contributed by the horizontal vorticity advection with additional contributions from vorticity stretching and the residual term (which includes friction and subgrid turbulence mixing). 3) Over the lee slope and downstream of the mountain, the northwestward movement is enhanced by asymmetric diabatic heating, making the turning more abrupt. 4) Far downstream of the mountain, the VT is mainly contributed by the horizontal vorticity advection.

Corresponding author address: Dr. Yuh-Lang Lin, EES, North Carolina A&T State University, 302H Gibbs Hall, 1601 E. Market St., Greensboro, NC 27411. E-mail: ylin@ncat.edu

Abstract

A series of idealized numerical experiments and vorticity budget analyses is performed to examine several mechanisms proposed in previous studies to help understand the orographic influence on track deflection over a mesoscale mountain range. When an idealized tropical cyclone (TC) is embedded in a uniform, easterly flow and passes over a mountain with a moderate Froude number, it is deflected to the south upstream, moves over the mountain anticyclonically, and then resumes its westward movement. The vorticity budget analysis indicates that the TC movement can be predicted by the maximum vorticity tendency (VT). The orographic effects on the above TC track deflection are explained by the following: 1) Upstream of the mountain, the easterly basic flow is decelerated as a result of orographic blocking that causes the flow to become subgeostrophic, which advects the TC to the southwest, analogous to the advection of a point vortex embedded in a flow. The VT is primarily dominated by the horizontal vorticity advection. 2) The TC passes over the mountain anticyclonically, mainly steered by the orographically generated high pressure. This makes the TC move southwestward (northwestward) over the upslope (lee slope). The VT is mainly contributed by the horizontal vorticity advection with additional contributions from vorticity stretching and the residual term (which includes friction and subgrid turbulence mixing). 3) Over the lee slope and downstream of the mountain, the northwestward movement is enhanced by asymmetric diabatic heating, making the turning more abrupt. 4) Far downstream of the mountain, the VT is mainly contributed by the horizontal vorticity advection.

Corresponding author address: Dr. Yuh-Lang Lin, EES, North Carolina A&T State University, 302H Gibbs Hall, 1601 E. Market St., Greensboro, NC 27411. E-mail: ylin@ncat.edu
Save
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of an island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130–155, doi:10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708–713, doi:10.1175/1520-0493(1974)102<0708:CITCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., 1984: An observational study on the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 1036–1048, doi:10.1175/1520-0469(1984)041<1036:AOSOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317–1336, doi:10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255–1270, doi:10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time-dependent cloud model. J. Meteor. Soc. Japan, 80, 99–118, doi:10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-L. Lin, 2005: Effects of the basic wind speed and CAPE on flow regimes associated with a conditionally unstable flow over a mesoscale mountain. J. Atmos. Sci., 62, 331–350, doi:10.1175/JAS-3380.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893–908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., Ed., 1995: Global perspective of tropical cyclones. WMO Tech. Doc. WMO/TD-693, 289 pp.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975–990, doi:10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harville, S. L., 2009: Effects of Appalachian topography on precipitation from landfalling hurricanes. M.S. thesis, North Carolina State University, 320 pp. [Available online at http://repository.lib.ncsu.edu/ir/handle/1840.16/2849.]

  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta-effect. J. Atmos. Sci., 40, 328–342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322–2339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727, doi:10.1175/2011MWR3560.1.

    • Search Google Scholar
    • Export Citation
  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615, doi:10.1175/2007MWR2134.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

  • Lin, Y.-L., and L. C. Savage III, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 2095–2106, doi:10.1175/2011JAS3720.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for tropical cyclones passing over mesoscale mountains. J. Atmos. Sci., 62, 1849–1866, doi:10.1175/JAS3439.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., N. C. Witcraft, and Y.-H. Kuo, 2006: Dynamics of track deflection associated with the passage of tropical cyclones over a mesoscale mountain. Mon. Wea. Rev., 134, 3509–3538, doi:10.1175/MWR3263.1.

    • Search Google Scholar
    • Export Citation
  • Liu, L., Y.-L. Lin, and S.-H. Chen, 2016: Effects of landfall location and approach angle of an idealized tropical cyclone over a long mountain range. Front. Earth Sci., 4, 14, doi:10.3389/feart.2016.00014.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408–425, doi:10.1175/JAS-3377.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, doi:10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF Model. J. Adv. Model. Earth Syst., 5, 382–405, doi:10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977–1003, doi:10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rostom, R., and Y.-L. Lin, 2015: Control parameters for track continuity of cyclones passing over the south-central Appalachian Mountains. Wea. Forecasting, 30, 1429–1449, doi:10.1175/WAF-D-14-00080.1.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 1671–185, doi:10.1002/qj.687.

    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589, doi:10.1002/qj.2240.

    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2015: Idealized simulations of the effect of local and remote topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 141, 2045–2056, doi:10.1002/qj.2498.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196, doi:10.1175/JAS-D-11-0346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 3292–3308, doi:10.1002/jgrd.50351.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-T., 1980: Prediction of the movement and strength of typhoons in Taiwan and its vicinity. National Science Council Research Rep. 108, 100 pp.

  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533–1549, doi:10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62–76, doi:10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050, doi:10.1175/JAS-D-14-0168.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001a: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 1801–1814, doi:10.1175/1520-0469(2001)058<1801:MAVCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001b: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639–3649, doi:10.1175/1520-0469(2001)058<3639:EOCHOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflection. Mon. Wea. Rev., 121, 3193–3212, doi:10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan topography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233, doi:10.1175/1520-0493(1993)121<3213:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 1993: The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci., 50, 2519–2532, doi:10.1175/1520-0469(1993)050<2519:TIOLST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., and M. J. Reeder, 1997: A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre. Meteor. Atmos. Phys., 64, 1–19, doi:10.1007/BF01044127.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 242 24
PDF Downloads 255 90 8