The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

Clara Orbe Goddard Earth Sciences Technology and Research, NASA Goddard Space Flight Center, Greenbelt, and The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
,
Darryn W. Waugh Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
,
Paul A. Newman Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Paul A. Newman in
Current site
Google Scholar
PubMed
Close
, and
Stephen Steenrod Universities Space Research Association, Columbia, Maryland

Search for other papers by Stephen Steenrod in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or “mean ages” Γ that are significantly larger than their corresponding modal transit times or “modal ages” τmode, especially in the NH, where Γ ≈ 0.5 yr, while τmode < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Δ—the second temporal moment of the TTD—to the mean age decreases sharply in the NH from ~2.5 at NH high latitudes to ~0.7 in the Southern Hemisphere (SH). Decreases in Δ/Γ in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5- and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD.

Corresponding author address: Clara Orbe, GESTAR, NASA Goddard Space Flight Center, Mail Code: 610.1, Greenbelt, MD 20771. E-mail: clara.orbe@nasa.gov

Abstract

The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or “mean ages” Γ that are significantly larger than their corresponding modal transit times or “modal ages” τmode, especially in the NH, where Γ ≈ 0.5 yr, while τmode < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Δ—the second temporal moment of the TTD—to the mean age decreases sharply in the NH from ~2.5 at NH high latitudes to ~0.7 in the Southern Hemisphere (SH). Decreases in Δ/Γ in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5- and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD.

Corresponding author address: Clara Orbe, GESTAR, NASA Goddard Space Flight Center, Mail Code: 610.1, Greenbelt, MD 20771. E-mail: clara.orbe@nasa.gov
Save
  • Bergman, J. W., F. Fierli, E. J. Jensen, S. Honomichl, and L. L. Pan, 2013: Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res. Atmos., 118, 25602575, doi:10.1002/jgrd.50142.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2006: Transport of carbon monoxide from the tropics to the extratropics. J. Geophys. Res., 111, D02107, doi:10.1029/2005JD006137.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and T. Erukhimova, 2004: Comparison of global-scale Lagrangian transport properties of the NCEP reanalysis and CCM3. J. Climate, 17, 11351146, doi:10.1175/1520-0442(2004)017<1135:COGLTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and A. Plumb, 2014: Effective isentropic diffusivity of tropospheric transport. J. Atmos. Sci., 71, 34993520, doi:10.1175/JAS-D-13-0333.1.

    • Search Google Scholar
    • Export Citation
  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100, 16 66116 673, doi:10.1029/95JD01264.

    • Search Google Scholar
    • Export Citation
  • Ehhalt, D., F. Rohrer, S. Schauffler, and M. Prather, 2004: On the decay of stratospheric pollutants: Diagnosing the longest-lived eigenmode. J. Geophys. Res., 109, D08102, doi:10.1029/2003JD004029.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2006: Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: An overview. Atmos. Chem. Phys., 6, 283301, doi:10.5194/acp-6-283-2006.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777, doi:10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geller, L., J. Elkins, J. M. Lobert, A. Clarke, D. Hurst, J. Butler, and R. Myers, 1997: Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett., 24, 675678, doi:10.1029/97GL00523.

    • Search Google Scholar
    • Export Citation
  • Gloor, M., and Coauthors, 2007: Three-dimensional SF6 data and tropospheric transport simulations: Signals, modeling accuracy, and implications for inverse modeling. J. Geophys. Res., 112, D15112, doi:10.1029/2006JD007973.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., C. Geron, T. Pierce, B. Lamb, P. Harley, and R. Fall, 2000: Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ., 34, 22052230, doi:10.1016/S1352-2310(99)00465-3.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and T. M. Hall, 2002: A generalized transport theory: Water-mass composition and age. J. Phys. Oceanogr., 32, 19321946, doi:10.1175/1520-0485(2002)032<1932:AGTTWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., H. Zhang, D. Waugh, and M. Holzer, 2008: On transit-time distributions in unsteady circulation models. Ocean Modell., 21, 3545, doi:10.1016/j.ocemod.2007.11.004.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 10591070, doi:10.1029/93JD03192.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., T. W. Haine, and D. W. Waugh, 2002: Inferring the concentration of anthropogenic carbon in the ocean from tracers. Global Biogeochem. Cycles, 16, 1131, doi:10.1029/2001GB001835.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., 1999: Analysis of passive tracer transport as modeled by an atmospheric general circulation model. J. Climate, 12, 16591684, doi:10.1175/1520-0442(1999)012<1659:AOPTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., 2009: The path density of interhemispheric surface-to-surface transport. Part II: Transport through the troposphere and stratosphere diagnosed from NCEP data. J. Atmos. Sci., 66, 21722189, doi:10.1175/2009JAS2895.1.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57, 35393558, doi:10.1175/1520-0469(2000)057<3539:TTATAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and G. J. Boer, 2001: Simulated changes in atmospheric transport climate. J. Climate, 14, 43984420, doi:10.1175/1520-0442(2001)014<4398:SCIATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and T. M. Hall, 2007: Low-level transpacific transport. J. Geophys. Res., 112, D09103, doi:10.1029/2006JD007828.

  • Holzer, M., and F. W. Primeau, 2010: Improved constraints on transit time distributions from argon 39: A maximum entropy approach. J. Geophys. Res., 115, C12021, doi:10.1029/2010JC006410.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and D. W. Waugh, 2015: Interhemispheric transit-time distributions and path-dependent lifetimes constrained by measurements of SF6, CFCs, and CFC replacements. Geophys. Res. Lett., 42, 45814589, doi:10.1002/2015GL064172.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., I. G. McKendry, and D. A. Jaffe, 2003: Springtime trans-Pacific atmospheric transport from East Asia: A transit-time probability density function approach. J. Geophys. Res., 108, 4708, doi:10.1029/2003JD003558.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., T. M. Hall, and R. B. Stull, 2005: Seasonality and weather-driven variability of transpacific transport. J. Geophys. Res., 110, D23103, doi:10.1029/2005JD006261.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1991: Towards a PV–θ view of the general circulation. Tellus, 43A, 2735, doi:10.1034/j.1600-0870.1991.t01-3-00005.x.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, doi:10.1038/nature08526.

    • Search Google Scholar
    • Export Citation
  • Klonecki, A., P. Hess, L. Emmons, L. Smith, J. Orlando, and D. Blake, 2003: Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. J. Geophys. Res., 108, 8367, doi:10.1029/2002JD002199.

    • Search Google Scholar
    • Export Citation
  • Konopka, P., J.-U. Grooß, F. Plöger, and R. Müller, 2009: Annual cycle of horizontal in-mixing into the lower tropical stratosphere. J. Geophys. Res., 114, D19111, doi:10.1029/2009JD011955.

    • Search Google Scholar
    • Export Citation
  • Law, K. S., and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 15371540, doi:10.1126/science.1137695.

  • Lee, Y., and Coauthors, 2013: Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 26072634, doi:10.5194/acp-13-2607-2013.

    • Search Google Scholar
    • Export Citation
  • Leibensperger, E. M., and R. A. Plumb, 2014: Effective diffusivity in baroclinic flow. J. Atmos. Sci., 71, 972984, doi:10.1175/JAS-D-13-0217.1.

    • Search Google Scholar
    • Export Citation
  • Levin, I., and V. Hesshaimer, 1996: Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6). J. Geophys. Res., 101, 16 74516 755, doi:10.1029/96JD01058.

    • Search Google Scholar
    • Export Citation
  • Li, F., D. W. Waugh, A. R. Douglass, P. A. Newman, S. Pawson, R. S. Stolarski, S. E. Strahan, and J. E. Nielsen, 2012: Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). J. Geophys. Res., 117, D05134, doi:10.1029/2011JD016877.

    • Search Google Scholar
    • Export Citation
  • Liang, Q., and Coauthors, 2010: Finding the missing stratospheric Bry: A global modeling study of CHBr3 and CH2Br2. Atmos. Chem. Phys., 10, 22692286, doi:10.5194/acp-10-2269-2010.

    • Search Google Scholar
    • Export Citation
  • Mahlman, J., 1997: Dynamics of transport processes in the upper troposphere. Science, 276, 10791083, doi:10.1126/science.276.5315.1079.

    • Search Google Scholar
    • Export Citation
  • Monks, S., and Coauthors, 2015: Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmos. Chem. Phys., 15, 35753603, doi:10.5194/acp-15-3575-2015.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., P. A. Newman, D. W. Waugh, M. Holzer, L. D. Oman, F. Li, and L. M. Polvani, 2015: Airmass origin in the Arctic. Part I: Seasonality. J. Climate, 28, 49975014, doi:10.1175/JCLI-D-14-00720.1.

    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, D. E. Kinnison, R. R. Garcia, and W. Choi, 2004: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res., 109, D03302, doi:10.1029/2003JD003706.

    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and N. J. Livesey, 2013: Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM. J. Geophys. Res. Atmos., 118, 19641980, doi:10.1029/2012JD018327.

    • Search Google Scholar
    • Export Citation
  • Patra, P., M. Takigawa, G. Dutton, K. Uhse, K. Ishijima, B. Lintner, K. Miyazaki, and J. Elkins, 2009: Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in troposphere. Atmos. Chem. Phys., 9, 12091225, doi:10.5194/acp-9-1209-2009.

    • Search Google Scholar
    • Export Citation
  • Plumb, R., and J. Mahlman, 1987: The zonally averaged transport characteristics of the GFDL general circulation/transport model. J. Atmos. Sci., 44, 298327, doi:10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Popovic, J. M., and R. A. Plumb, 2001: Eddy shedding from the upper-tropospheric Asian monsoon anticyclone. J. Atmos. Sci., 58, 93104, doi:10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prather, M., M. McElroy, S. Wofsy, G. Russell, and D. Rind, 1987: Chemistry of the global troposphere: Fluorocarbons as tracers of air motion. J. Geophys. Res., 92, 65796613, doi:10.1029/JD092iD06p06579.

    • Search Google Scholar
    • Export Citation
  • Primeau, F. W., and M. Holzer, 2006: The ocean’s memory of the atmosphere: Residence-time and ventilation-rate distributions of water masses. J. Phys. Oceanogr., 36, 14391456, doi:10.1175/JPO2919.1.

    • Search Google Scholar
    • Export Citation
  • Prinn, R., and Coauthors, 1992: Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990. J. Geophys. Res., 97, 24452461, doi:10.1029/91JD02755.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611613, doi:10.1126/science.1182274.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., F. L. Moore, J. W. Elkins, G. S. Dutton, D. W. Fahey, H. Vömel, S. J. Oltmans, and K. H. Rosenlof, 1999: Transport into the Northern Hemisphere lowermost stratosphere revealed by in situ tracer measurements. J. Geophys. Res., 104, 26 56526 580, doi:10.1029/1999JD900323.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., A. R. Douglass, B. Polansky, C. Boone, K. A. Walker, and P. Bernath, 2005: Estimation of stratospheric age spectrum from chemical tracers. J. Geophys. Res., 110, D21303, doi:10.1029/2005JD006125.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and Coauthors, 2008: A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys., 8, 53535372, doi:10.5194/acp-8-5353-2008.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111, D11306, doi:10.1029/2005JD006888.

    • Search Google Scholar
    • Export Citation
  • Strahan, S., B. Duncan, and P. Hoor, 2007: Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model. Atmos. Chem. Phys., 7, 24352445, doi:10.5194/acp-7-2435-2007.

    • Search Google Scholar
    • Export Citation
  • Thiele, G., and J. Sarmiento, 1990: Tracer dating and ocean ventilation. J. Geophys. Res., 95, 93779391, doi:10.1029/JC095iC06p09377.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and T. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1-11-26, doi:10.1029/2000RG000101.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., D. B. Considine, and E. L. Fleming, 2001: Is upper stratospheric chlorine decreasing as expected? Geophys. Res. Lett., 28, 11871190, doi:10.1029/2000GL011745.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., T. M. Hall, and T. W. Haine, 2003: Relationships among tracer ages. J. Geophys. Res., 108, 3138, doi:10.1029/2002JC001325.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear, 2006: Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus, 58B, 376389, doi:10.1111/j.1600-0889.2006.00222.x.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2013: Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface. J. Geophys. Res. Atmos., 118, 11 42911 441, doi:10.1002/jgrd.50848.

    • Search Google Scholar
    • Export Citation
  • Young, P. J., and Coauthors, 2013: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 20632090, doi:10.5194/acp-13-2063-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 357 110 27
PDF Downloads 232 70 18