The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter

Hanin Binder Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Hanin Binder in
Current site
Google Scholar
PubMed
Close
,
Maxi Boettcher Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Maxi Boettcher in
Current site
Google Scholar
PubMed
Close
,
Hanna Joos Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Hanna Joos in
Current site
Google Scholar
PubMed
Close
, and
Heini Wernli Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Heini Wernli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of warm conveyor belts (WCBs) and their associated positive low-level potential vorticity (PV) anomalies are investigated for extratropical cyclones in Northern Hemisphere winter, using ERA-Interim and composite techniques. The Spearman correlation coefficient of 0.68 implies a moderate to strong correlation between cyclone intensification and WCB strength. Hereby, cyclone intensification is quantified by the normalized maximum 24-h central sea level pressure deepening and WCB strength by the WCB air mass associated with the cyclone’s 24-h period of strongest deepening. Explosively intensifying cyclones typically have strong WCBs and pronounced WCB-related PV production in the cyclone center; they are associated with a WCB of type W2, which ascends close to the cyclone center. Cyclones with similar WCB strength but weak intensification are either diabatic Rossby waves, which do not interact with an upper-level disturbance, or cyclones where much of the WCB-related PV production occurs far from the cyclone center and thereby does not contribute strongly to cyclone deepening (WCB of type W1, which ascends mainly along the cold front). The category of explosively intensifying cyclones with weak WCBs is inhomogeneous but often characterized by a very low tropopause or latent heating independent of WCBs. These findings reveal that (i) diabatic PV production in WCBs is essential for the intensification of many explosive cyclones, (ii) the importance of WCBs for cyclone development strongly depends on the location of the PV production relative to the cyclone center, and (iii) a minority of explosive cyclones is not associated with WCBs.

Corresponding author address: Hanin Binder, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. E-mail: hanin.binder@env.ethz.ch

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0302.s1.

Abstract

The role of warm conveyor belts (WCBs) and their associated positive low-level potential vorticity (PV) anomalies are investigated for extratropical cyclones in Northern Hemisphere winter, using ERA-Interim and composite techniques. The Spearman correlation coefficient of 0.68 implies a moderate to strong correlation between cyclone intensification and WCB strength. Hereby, cyclone intensification is quantified by the normalized maximum 24-h central sea level pressure deepening and WCB strength by the WCB air mass associated with the cyclone’s 24-h period of strongest deepening. Explosively intensifying cyclones typically have strong WCBs and pronounced WCB-related PV production in the cyclone center; they are associated with a WCB of type W2, which ascends close to the cyclone center. Cyclones with similar WCB strength but weak intensification are either diabatic Rossby waves, which do not interact with an upper-level disturbance, or cyclones where much of the WCB-related PV production occurs far from the cyclone center and thereby does not contribute strongly to cyclone deepening (WCB of type W1, which ascends mainly along the cold front). The category of explosively intensifying cyclones with weak WCBs is inhomogeneous but often characterized by a very low tropopause or latent heating independent of WCBs. These findings reveal that (i) diabatic PV production in WCBs is essential for the intensification of many explosive cyclones, (ii) the importance of WCBs for cyclone development strongly depends on the location of the PV production relative to the cyclone center, and (iii) a minority of explosive cyclones is not associated with WCBs.

Corresponding author address: Hanin Binder, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. E-mail: hanin.binder@env.ethz.ch

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0302.s1.

Supplementary Materials

    • Supplemental Materials (PDF 3.68 MB)
Save
  • Ahmadi-Givi, F., G. C. Craig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295324, doi:10.1256/qj.02.226.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 11741188, doi:10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1987: The role of oceanic fluxes and initial data in the numerical prediction of an intense coastal storm. Dyn. Atmos. Oceans, 10, 359388, doi:10.1016/0377-0265(87)90025-X.

    • Search Google Scholar
    • Export Citation
  • Badger, J., and B. Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 3849, doi:10.1175/1520-0469(2001)058<0038:SIVPAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2011: Life cycle study of a diabatic Rossby wave as a precursor to rapid cyclogenesis in the North Atlantic—Dynamics and forecast performance. Mon. Wea. Rev., 139, 18611878, doi:10.1175/2011MWR3504.1.

    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, doi:10.1175/MWR-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, doi:10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Browning, K. A., 1999: Mesoscale aspects of extratropical cyclones: An observational perspective. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Springer, 265–283, doi:10.1007/978-1-935704-09-6_18.

  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, doi:10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, doi:10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725740, doi:10.1175/JAS-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., C. S. A. Davitt, and A. J. Thorpe, 1996: Attribution concepts applied to the omega equation. Quart. J. Roy. Meteor. Soc., 122, 19431962, doi:10.1002/qj.49712253610.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, doi:10.1175/JAS-D-15-0254.1.

    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, doi:10.1175/JAS-D-14-0337.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, doi:10.1002/grl.50105.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., M. K. Hawcroft, M. A. Stringer, and K. I. Hodges, 2012: An extratropical cyclone atlas: A tool for illustrating cyclone structure and evolution characteristics. Bull. Amer. Meteor. Soc., 93, 14971502, doi:10.1175/BAMS-D-11-00164.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, doi:10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., K. A. Browning, and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117, doi:10.1256/00359000260498806.

    • Search Google Scholar
    • Export Citation
  • De Vries, H., J. Methven, T. H. A. Frame, and B. J. Hoskins, 2010: Baroclinic waves with parameterized effects of moisture interpreted using Rossby wave components. J. Atmos. Sci., 67, 27662784, doi:10.1175/2010JAS3410.1.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, doi:10.1029/2012GL051025.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 11371155, doi:10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 11561173, doi:10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 11411155, doi:10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, doi:10.1002/qj.49709942003.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1990: Theory of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 63–80.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, doi:10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Liberato, M. L. R., J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo, 2013: Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci., 13, 22392251, doi:10.5194/nhess-13-2239-2013.

    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, M. Reyers, and S. L. Gray, 2014: The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Quart. J. Roy. Meteor. Soc., 140, 17291741, doi:10.1002/qj.2253.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 20282037, doi:10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. L. Gray, R. S. Plant, J. Methven, and H. Wernli, 2014: The dichotomous structure of the warm conveyor belt. Quart. J. Roy. Meteor. Soc., 140, 18091824, doi:10.1002/qj.2276.

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828, doi:10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Methven, J., 2015: Potential vorticity in warm conveyor belt outflow. Quart. J. Roy. Meteor. Soc., 141, 10651071, doi:10.1002/qj.2393.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199, doi:10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, doi:10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129, 29893012, doi:10.1256/qj.02.174.

    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon. Wea. Rev., 128, 18171834, doi:10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, K. Maynard, and A. Joly, 2010: The essential ingredients leading to the explosive growth stage of the European wind storm Lothar of Christmas 1999. Quart. J. Roy. Meteor. Soc., 136, 638652, doi:10.1002/qj.585.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, doi:10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclones PV-tower. Meteor. Atmos. Phys., 73, 139156, doi:10.1007/s007030050070.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. A. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 169–191.

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Spearman, C., 1904: The proof and measurement of association between two things. Amer. J. Psychol., 15, 72101, doi:10.2307/1412159.

  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, doi:10.5194/gmd-8-2569-2015.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, doi:10.1175/JAS-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87. Quart. J. Roy. Meteor. Soc., 117, 903941, doi:10.1002/qj.49711750103.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

  • Ulbrich, U., A. H. Fink, M. Klawa, and J. G. Pinto, 2001: Three extreme storms over Europe in December 1999. Weather, 56, 7080, doi:10.1002/j.1477-8696.2001.tb06540.x.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, doi:10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889908, doi:10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’s Day cyclone. Mon. Wea. Rev., 116, 23372365, doi:10.1175/1520-0493(1988)116<2337:AMBDSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, M., G. Monk, and K. Browning, 1987: Interpretation of satellite imagery of a rapidly deepening cyclone. Quart. J. Roy. Meteor. Soc., 113, 10891115, doi:10.1002/qj.49711347803.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the surprise snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, doi:10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1376 430 41
PDF Downloads 1257 385 17