Analytical Infrared Delta-Four-Stream Adding Method from Invariance Principle

Feng Zhang Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Feng Zhang in
Current site
Google Scholar
PubMed
Close
,
Kun Wu Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Kun Wu in
Current site
Google Scholar
PubMed
Close
,
Jiangnan Li Canadian Center for Climate Modeling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jiangnan Li in
Current site
Google Scholar
PubMed
Close
,
Quan Yang Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Quan Yang in
Current site
Google Scholar
PubMed
Close
,
Jian-Qi Zhao State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jian-Qi Zhao in
Current site
Google Scholar
PubMed
Close
, and
Jian Li State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jian Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The single-layer solutions using a four-stream discrete ordinates method (DOM) in infrared radiative transfer (IRT) have been obtained. Two types of thermal source assumptions—Planck function exponential and linear dependence on optical depth—are considered. To calculate the IRT in multiple layers with a vertically inhomogeneous atmosphere, an analytical adding algorithm has been developed by applying the infrared invariance principle. The derived adding algorithm of the delta-four-stream DOM (δ-4DDA) can be simplified to work for the delta-two-stream DOM (δ-2DDA).

The accuracy for monochromatic emissivity is investigated for both δ-2DDA and δ-4DDA. The relative error for the downward emissivity can be as high as 15% for δ-2DDA, while the error is bounded by 2% for δ-4DDA. By incorporating δ-4DDA into a radiation model with gaseous transmission, δ-4DDA is much more accurate than δ-2DDA. Also, δ-4DDA is much more efficient, since it is an analytical method. The computing time of δ-4DDA is about one-third of the corresponding inverse matrix method.

Earth System Modeling Center Contribution Number 124.

Denotes Open Access content.

Corresponding author address: Feng Zhang, College of Atmospheric Science, Nanjing University of Information Science and Technology, 219 Ning Liu Road, Nanjing 21004, China. E-mail: feng_zhang126@126.com

Abstract

The single-layer solutions using a four-stream discrete ordinates method (DOM) in infrared radiative transfer (IRT) have been obtained. Two types of thermal source assumptions—Planck function exponential and linear dependence on optical depth—are considered. To calculate the IRT in multiple layers with a vertically inhomogeneous atmosphere, an analytical adding algorithm has been developed by applying the infrared invariance principle. The derived adding algorithm of the delta-four-stream DOM (δ-4DDA) can be simplified to work for the delta-two-stream DOM (δ-2DDA).

The accuracy for monochromatic emissivity is investigated for both δ-2DDA and δ-4DDA. The relative error for the downward emissivity can be as high as 15% for δ-2DDA, while the error is bounded by 2% for δ-4DDA. By incorporating δ-4DDA into a radiation model with gaseous transmission, δ-4DDA is much more accurate than δ-2DDA. Also, δ-4DDA is much more efficient, since it is an analytical method. The computing time of δ-4DDA is about one-third of the corresponding inverse matrix method.

Earth System Modeling Center Contribution Number 124.

Denotes Open Access content.

Corresponding author address: Feng Zhang, College of Atmospheric Science, Nanjing University of Information Science and Technology, 219 Ning Liu Road, Nanjing 21004, China. E-mail: feng_zhang126@126.com
Save
  • Chandrasekhar, S., 1950: Radiative Transfer. Oxford University Press, 393 pp.

  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 40 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Coakley, J. A. J., and P. Chýlek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409418, doi:10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dobbie, J. S., J. Li, and P. Chýlek, 1999: Two- and four-stream optical properties for water clouds and solar wavelengths. J. Geophys. Res., 104, 20672079, doi:10.1029/1998JD200039.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1991: Parameterization of radiative processes in vertically nonhomogeneous multiple scattering atmospheres. Ph.D. thesis, University of Utah, 259 pp. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.]

  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812, doi:10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gabriel, P., M. J. Christi, and G. L. Stephens, 2006: Calculation of Jacobians for inverse radiative transfer: An efficient hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 97, 209227, doi:10.1016/j.jqsrt.2005.05.060.

    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., 2006: Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos. Sci., 63, 23242339, doi:10.1175/JAS3755.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., 2000: Gaussian quadrature and its application to infrared radiative transfer. J. Atmos. Sci., 57, 753765, doi:10.1175/1520-0469(2000)057<0753:GQAIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., 2002: Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, including cloud scattering and overlap. J. Atmos. Sci., 59, 33023320, doi:10.1175/1520-0469(2002)059<3302:AFUCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., and V. Ramaswamy, 1996: Four-stream spherical harmonic expansion approximation for solar radiative transfer. J. Atmos. Sci., 53, 11741186, doi:10.1175/1520-0469(1996)053<1174:FSSHEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., S. Dobbie, P. Raisanen, and Q. Min, 2005: Accounting for unresolved cloud in solar radiation. Quart. J. Roy. Meteor. Soc., 131, 16071629, doi:10.1256/qj.04.31.

    • Search Google Scholar
    • Export Citation
  • Lin, L., Q. Fu, H. Zhang, J. Su, Q. Yang, and Z. Sun, 2013: Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 117, 114122, doi:10.1016/j.jqsrt.2012.11.016.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1974: Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 53, 11741186, doi:10.1175/1520-0469(1974)031<1473:ATSAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 2002: An Introduction to Atmospheric Radiation. 3rd ed. Academic Press, 583 pp.

  • Liou, K.-N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 19401947, doi:10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and S. Endo, 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 13 87713 890, doi:10.1002/2014JD022265.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, G. J. Zhang, X. Wu, S. Endo, L. Cao, Y. Li, and X. Gao, 2016: Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci., 73, 761773, doi:10.1175/JAS-D-15-0050.1.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972: Optical Properties of the Atmosphere. Air Force Rep. AFCRL-71-0279, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630643, doi:10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 48694878, doi:10.1364/AO.39.004869.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The Continual Intercomparison of Radiation Codes: Results from Phase I. J. Geophys. Res., 117, D06118, doi:10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and A. Uchiyama, 1992: Accuracy of the delta-four-stream approximation in inhomogeneous scattering atmospheres. J. Meteor. Soc. Japan, 70, 10971110.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, doi:10.1364/AO.27.002502.

    • Search Google Scholar
    • Export Citation
  • Sykes, J. B., 1951: Approximate integration of the equation of transfer. Mon. Not. Roy. Astron. Soc., 111, 377386, doi:10.1093/mnras/111.4.377.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., C. P. McKay, and T. P. Ackerman, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Search Google Scholar
    • Export Citation
  • van Oss, R. F., and R. J. Spurr, 2002: Fast and accurate 4 and 6 stream linearized discrete ordinate radiative transfer models for ozone profile retrieval. J. Quant. Spectrosc. Radiat. Transfer, 75, 177220, doi:10.1016/S0022-4073(01)00246-1.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1976: Extension of the doubling method to inhomogeneous sources. J. Quant. Spectrosc. Radiat. Transfer, 16, 477489, doi:10.1016/0022-4073(76)90083-2.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977: The delta-M method: Rapid yet accurate radiative flux calculations. J. Atmos. Sci., 34, 14081422, doi:10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. Liou, L. Bi, C. Liu, B. Yi, and B. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263, doi:10.1007/s00376-014-0011-z.

    • Search Google Scholar
    • Export Citation
  • Yi, B., X. Huang, P. Yang, B. A. Baum, and G. W. Kattawar, 2014: Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code. J. Quant. Spectrosc. Radiat. Transfer, 146, 540548, doi:10.1016/j.jqsrt.2014.05.020.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. Li, 2013: Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J. Atmos. Sci., 70, 30843101, doi:10.1175/JAS-D-12-0334.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Shen, J. Li, X. Zhou, and L. Ma, 2013: Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. J. Atmos. Sci., 70, 794808, doi:10.1175/JAS-D-12-0122.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., F. Zhang, Q. Fu, Z. Shen, and P. Lu, 2010: Two- and four-stream combination approximations for computation of diffuse actinic fluxes. J. Atmos. Sci., 67, 32383252, doi:10.1175/2010JAS3370.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Q. Chen, and B. Xie, 2015: A new parameterization for ice cloud optical properties use in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transfer, 150, 7686, doi:10.1016/j.jqsrt.2014.08.024.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 314 179 4
PDF Downloads 143 58 3