Idealized Numerical Modeling of the Diurnal Cycle of Tropical Cyclones

Erika L. Navarro University of Washington, Seattle, Washington

Search for other papers by Erika L. Navarro in
Current site
Google Scholar
PubMed
Close
and
Gregory J. Hakim University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A numerical experiment is performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in high cloudiness has been well documented previously, the link to tropical cyclone (TC) structure and intensity remains unknown. Previous modeling studies attributed differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterizations. Here, a numerically simulated TC in a statistically steady state is examined for 300 days to quantify the TC response to the daily cycle of radiation.

Fourier analysis in time reveals a spatially coherent diurnal signal in the temperature, wind, and latent heating tendency fields. This signal is statistically different from random noise and accounts for up to 62% of the variance in the TC outflow and 28% of the variance in the boundary layer. Composite analysis of each hour of the day reveals a cycle in storm intensity: a maximum is found in the morning and a minimum in the evening, with magnitudes near 1 m s−1. Anomalous latent heating forms near the inner core of the storm in the late evening, which persists throughout the early morning. Examination of the radial–vertical wind suggests two distinct circulations: 1) a radiatively driven circulation in the outflow layer due to absorption of solar radiation and 2) a convectively driven circulation in the lower and middle troposphere due to anomalous latent heating. These responses are coupled and are periodic with respect to the diurnal cycle.

Denotes Open Access content.

Corresponding author address: Erika L. Navarro, University of Washington, 408 Atmospheric Sciences/Geophysics (ATG) Building, Box 351640, Seattle, WA 98195-1640. E-mail: enavarr4@atmos.uw.edu

Abstract

A numerical experiment is performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in high cloudiness has been well documented previously, the link to tropical cyclone (TC) structure and intensity remains unknown. Previous modeling studies attributed differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterizations. Here, a numerically simulated TC in a statistically steady state is examined for 300 days to quantify the TC response to the daily cycle of radiation.

Fourier analysis in time reveals a spatially coherent diurnal signal in the temperature, wind, and latent heating tendency fields. This signal is statistically different from random noise and accounts for up to 62% of the variance in the TC outflow and 28% of the variance in the boundary layer. Composite analysis of each hour of the day reveals a cycle in storm intensity: a maximum is found in the morning and a minimum in the evening, with magnitudes near 1 m s−1. Anomalous latent heating forms near the inner core of the storm in the late evening, which persists throughout the early morning. Examination of the radial–vertical wind suggests two distinct circulations: 1) a radiatively driven circulation in the outflow layer due to absorption of solar radiation and 2) a convectively driven circulation in the lower and middle troposphere due to anomalous latent heating. These responses are coupled and are periodic with respect to the diurnal cycle.

Denotes Open Access content.

Corresponding author address: Erika L. Navarro, University of Washington, 408 Atmospheric Sciences/Geophysics (ATG) Building, Box 351640, Seattle, WA 98195-1640. E-mail: enavarr4@atmos.uw.edu
Save
  • Brown, B., and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, doi:10.1175/JAS-D-12-0112.1.

    • Search Google Scholar
    • Export Citation
  • Browner, S., W. Woodley, and C. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864, doi:10.1175/1520-0493(1977)105<0856:DOOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, doi:10.1175/2009JAS3038.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 84 pp.

  • Craig, G. C., 1996: Numerical experiments on radiation and tropical cyclones. Quart. J. Roy. Meteor. Soc., 122, 415422, doi:10.1002/qj.49712253006.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, doi:10.1175/MWR-D-13-00191.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. P. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical cirrus. J. Atmos. Sci., 66, 28592873, doi:10.1175/2009JAS3046.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W., and R. J. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1980: The role of convective-scale processes in tropical cyclone development. Ph.D. thesis, Colorado State University, 207 pp.

  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376, doi:10.1175/2010JAS3644.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2013: The variability and predictability of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 70, 9931005, doi:10.1175/JAS-D-12-0188.1.

    • Search Google Scholar
    • Export Citation
  • Hobgood, J., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 29012922, doi:10.1175/1520-0469(1986)043<2901:APMFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, doi:10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lajoie, F., and I. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544, doi:10.1175/1520-0493(1984)112<0535:OOHLCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, doi:10.1175/JAS-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of nature typhoons. J. Meteor. Soc. Japan, 61, 7790.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, doi:10.1175/JAS-D-11-0204.1.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. Rodgers, and R. Gentry, 1984: The role of equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones. Mon. Wea. Rev., 112, 23382344, doi:10.1175/1520-0493(1984)112<2338:TDVOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten-level model. Part II. Tellus, 22A, 504510, doi:10.1111/j.2153-3490.1970.tb00516.x.

    • Search Google Scholar
    • Export Citation
  • Tang, X., and F. Zhang, 2016: Impacts of the diurnal radiation cycle on the formation, intensity, and structure of Hurricane Edouard (2014). J. Atmos. Sci., 73, 28712892, doi:10.1175/JAS-D-15-0283.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, doi:10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • Zhang, J., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, doi:10.1175/JAS-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 234 17
PDF Downloads 298 104 2