Air–Sea Interactions in Light of New Understanding of Air–Land Interactions

Jielun Sun National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jielun Sun in
Current site
Google Scholar
PubMed
Close
and
Jeffrey R. French University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air–sea interactions are investigated using the data from the Coupled Boundary Layers Air–Sea Transfer experiment under low wind (CBLAST-Low) and the Surface Wave Dynamics Experiment (SWADE) over sea and compared with measurements from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) over land. Based on the concept of the hockey-stick transition (HOST) hypothesis, which emphasizes contributions of large coherent eddies in atmospheric turbulent mixing that are not fully captured by Monin–Obukhov similarity theory, relationships between the atmospheric momentum transfer and the sea surface roughness, and the role of the sea surface temperature (SST) and oceanic waves in the turbulent transfer of atmospheric momentum, heat, and moisture, and variations of drag coefficient Cd(z) over sea and land with wind speed V are studied.

In general, the atmospheric turbulence transfers over sea and land are similar except under weak winds and near the sea surface when wave-induced winds and oceanic currents are relevant to wind shear in generating atmospheric turbulence. The transition of the atmospheric momentum transfer between the stable and the near-neutral regimes is different over land and sea owing to the different strength and formation of atmospheric stable stratification. The relationship between the air–sea temperature difference and the turbulent heat transfer over sea is dominated by large air temperature variations compared to the slowly varying SST. Physically, Cd(z) consists of the surface skin drag and the turbulence drag between z and the surface; the increase of the latter with decreasing V leads to the minimum Cd(z), which is observed, but not limited to, over sea.

Corresponding author address: Jielun Sun, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: jsun@ucar.edu

Abstract

Air–sea interactions are investigated using the data from the Coupled Boundary Layers Air–Sea Transfer experiment under low wind (CBLAST-Low) and the Surface Wave Dynamics Experiment (SWADE) over sea and compared with measurements from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) over land. Based on the concept of the hockey-stick transition (HOST) hypothesis, which emphasizes contributions of large coherent eddies in atmospheric turbulent mixing that are not fully captured by Monin–Obukhov similarity theory, relationships between the atmospheric momentum transfer and the sea surface roughness, and the role of the sea surface temperature (SST) and oceanic waves in the turbulent transfer of atmospheric momentum, heat, and moisture, and variations of drag coefficient Cd(z) over sea and land with wind speed V are studied.

In general, the atmospheric turbulence transfers over sea and land are similar except under weak winds and near the sea surface when wave-induced winds and oceanic currents are relevant to wind shear in generating atmospheric turbulence. The transition of the atmospheric momentum transfer between the stable and the near-neutral regimes is different over land and sea owing to the different strength and formation of atmospheric stable stratification. The relationship between the air–sea temperature difference and the turbulent heat transfer over sea is dominated by large air temperature variations compared to the slowly varying SST. Physically, Cd(z) consists of the surface skin drag and the turbulence drag between z and the surface; the increase of the latter with decreasing V leads to the minimum Cd(z), which is observed, but not limited to, over sea.

Corresponding author address: Jielun Sun, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: jsun@ucar.edu
Save
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Austin, T. C., and Coauthors, 2002: A network-based telemetry architecture developed for the Martha’s Vineyard Coastal Observatory. IEEE J. Oceanic Eng., 27, 228234, doi:10.1109/JOE.2002.1002477.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Churchill, J. H., A. J. Plueddemann, and S. M. Faluotico, 2006: Extracting wind sea and swell from directional wave spectra derived from a bottom-mounted ADCP. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2006-13, 34 pp., doi:10.1575/1912/1372.

  • Colton, M. C., W. J. Plant, W. C. Keller, and G. L. Geernaert, 1995: Tower-based measurements of normalized radar cross section from Lake Ontario: Evidence of wind stress dependence. J. Geophys. Res., 100, 87918813, doi:10.1029/95JC00364.

    • Search Google Scholar
    • Export Citation
  • Crescenti, G. H., J. R. French, and T. L. Crawford, 2001: Aircraft measurements in the coupled boundary layers air-sea transfer (CBLAST) light wind pilot field study. National Oceanic and Atmospheric Administration Tech. Memo. OAR ARL-241, 82 pp. [Available online at www.arl.noaa.gov/documents/reports/arl-241.pdf.]

  • Davidson, K. L., and A. J. Frank, 1973: Wave-related fluctuations in the airflow above natural waves. J. Phys. Oceanogr., 3, 102119, doi:10.1175/1520-0485(1973)003<0102:WRFITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air-sea interaction. Ocean Engineering Science, B. LeMehaute and D. Hanes, Eds., John Wiley, 239–292.

  • Donelan, M. A., and W. H. Hui, 1990: Mechanics of ocean surface waves. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds., Vol. 1, Springer, 209–246.

  • Donelan, M. A., and F. Dobson, 2001: The influence of swell on the drag. Wind Stress over the Ocean, I. S. F. Jones and Y. Toba, Eds., Cambridge University Press, 181–189.

  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, doi:10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, doi:10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515, doi:10.1023/A:1002054820455.

    • Search Google Scholar
    • Export Citation
  • Druilhet, A., P. Durand, A. Fischer, and F. Said, 1990: Aircraft measurements of sea surface conditions and their relationship to marine boundary-layer dynamics. Bound.-Layer Meteor., 52, 397414, doi:10.1007/BF00119431.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, doi:10.1175/2010JPO4420.1.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 85938609, doi:10.1029/90JC02062.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1987: On the importance of the drag coefficient in air-sea interactions. Dyn. Atmos. Oceans, 11, 1938, doi:10.1016/0377-0265(87)90012-1.

    • Search Google Scholar
    • Export Citation
  • Geiger, R., 1927: The Climate near the Ground. 1st ed. Vieweg, 246 pp.

  • Geiger, R., R. H. Aron, and P. Todhunter, 1995: The Climate near the Ground. 5th ed. Harvard University Press, 528 pp.

  • Gerbi, G. P., H. H. Trowbridge, J. B. Edson, A. J. Plueddemann, E. A. Terray, and J. J. Fredericks, 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38, 10541072, doi:10.1175/2007JPO3739.1.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, doi:10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, doi:10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23, 688693, doi:10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2.

  • Hedde, T., and P. Durand, 1994: Turbulence intensities and bulk coefficients in the surface layer above the sea. Bound.-Layer Meteor., 71, 415432, doi:10.1007/BF00712178.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1978: Some limitations of dimensional analysis and power laws. Bound.-Layer Meteor., 14, 567569, doi:10.1007/BF00121895.

    • Search Google Scholar
    • Export Citation
  • Högström, U., J. C. R. Hunt, and A.-S. Smedman, 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteor., 103, 101124, doi:10.1023/A:1014579828712.

    • Search Google Scholar
    • Export Citation
  • Hristov, T., S. Miller, and C. Friehe, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422, 5558, doi:10.1038/nature01382.

    • Search Google Scholar
    • Export Citation
  • Hsiao, S., and O. Shemdim, 1983: Measurements of wind velocity and pressure with a wave follower during MARSEN. J. Geophys. Res., 88, 98419849, doi:10.1029/JC088iC14p09841.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow, Turbul. Combust., 66, 453475, doi:10.1023/A:1013519021030.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1995: Spatial measurements of small-scale ocean waves. Air–Water Gas Transfer: Selected Papers from the Third International Symposium on Air–Water Gas Transfer, J. Bernd et al., Eds., AEON Verlag & Studio, 153–164.

  • Hwang, P. A., 1997: A study of the wavenumber spectra of short water waves in the ocean. Part II: Spectral model and mean square slope. J. Atmos. Oceanic Technol., 14, 11741186, doi:10.1175/1520-0426(1997)014<1174:ASOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., W. K. Melville, and W. C. Keller, 1991: Breaking waves affecting microwave backscatter: 1. Detection and verification. J. Geophys. Res., 96, 20 54720 559, doi:10.1029/91JC01993.

    • Search Google Scholar
    • Export Citation
  • Johnson, H., J. Højstrup, H. Vested, and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716, doi:10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S., and Y. Toba, 1995: Comments on the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 25, 19051907, doi:10.1175/1520-0485(1995)025<1905:CODOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khelif, D., C. Friehe, H. Jonsson, Q. Wang, and K. Radosc, 2005: Wintertime boundary-layer structure and air and sea interaction over the Japan/East Sea. Deep-Sea Res. II, 52, 15251546, doi:10.1016/j.dsr2.2004.04.005.

    • Search Google Scholar
    • Export Citation
  • Klipp, C. L., and L. Mahrt, 2004: Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872103, doi:10.1256/qj.03.161.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., C. Y. Peng, B. Chapron, and E. Mollo-Christensen, 1996: Wavelet analysis of wind fluctuations over wave groups. The Air-Sea Interface Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., Rosenstiel School of Marine and Atmospheric Science, University of Miami, 469–474.

  • Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179199, doi:10.1007/s10546-012-9782-x.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, and D. Stauffer, 2015: Dependence of turbulent velocities on wind speed and stratification. Bound.-Layer Meteor., 155, 5571, doi:10.1007/s10546-014-9992-5.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., E. L Andreas, J. B. Edson, D. Vickers, J. Sun, and E. G. Patton, 2016: Coastal zone surface stress with stable stratification. J. Phys. Oceanogr., 46, 95105, doi:10.1175/JPO-D-15-0116.1.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and C. Mastenbroek, 1996: Fluxes of momentum and heat above waves. The Air-Sea Interface Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., Rosenstiel School of Marine and Atmospheric Science, University of Miami, 475–480.

  • Makin, V. K., and V. N. Kudryavtsev, 2003: Wind-over-waves coupling. Wind over Waves II: Forecasting and Fundamentals of Applications, S. G. Sajjadi and J. C. Hunt, Eds., Elsevier, 46–56.

  • Marsden, R., and B.-A. Juszko, 1989: Wind estimates from wave slopes. J. Geophys. Res., 94, 62666272, doi:10.1029/JC094iC05p06266.

  • Nordeng, T. E., 1991: On the wave age dependent drag coefficient and roughness length at sea. J. Geophys. Res., 96, 71677174, doi:10.1029/90JC02649.

    • Search Google Scholar
    • Export Citation
  • Oost, W. A., G. Komen, C. Jacobs, and C. Van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, doi:10.1023/A:1014913624535.

    • Search Google Scholar
    • Export Citation
  • Papadimitrakis, Y., and A. Papaioannou, 2003: Sea surface roughness parameterization. Wind over Waves II: Forecasting and Fundamentals of Applications, S. G. Sajjadi and J. C. Hunt, Eds., Elsevier, 57–72.

  • Poulos, G. S., and Coauthors, 2002: CASES-99—A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Riley, D., M. Donelan, and W. Hui, 1982: An extended Miles’ theory for wave generation by wind. Bound.-Layer Meteor., 22, 209225, doi:10.1007/BF00118254.

    • Search Google Scholar
    • Export Citation
  • Sajjadi, S., and M. Bettencourt, 2003: An improved parameterization for energy exchange from wind to Stokes waves. Wind over Waves II: Forecasting and Fundamentals of Applications, S. G. Sajjadi and J. C. Hunt, Eds., Elsevier, 84–104.

  • Sjöblom, A., and A.-S. Smedman, 2002: The turbulent kinetic energy budget in the marine atmospheric surface layer. J. Geophys. Res., 107, 3142, doi:10.1029/2001JC001016.

    • Search Google Scholar
    • Export Citation
  • Sjöblom, A., and A.-S. Smedman, 2003: Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Bound.-Layer Meteor., 109, 125, doi:10.1023/A:1025407109324.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Hogstrom, H. Bergstrom, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. J. Geophys. Res., 104, 25 83325 851, doi:10.1029/1999JC900213.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., X. Guo Larsén, U. Högström, K. K. Kahma, and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, doi:10.1029/2002JC001526.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 141, doi:10.1016/S0065-2687(08)60052-7.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, F. E., G. W. Groves, K. Hasselmann, G. Miller, W. Munk, and W. Powers, 1966: Propagation of ocean swell across the Pacific. Philos. Trans. Roy. Soc. London, A259, 431497, doi:10.1098/rsta.1966.0022.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41, 33513367, doi:10.1175/1520-0469(1984)041<3351:TTTPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, doi:10.1017/S0022112099006965.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 1999: Diurnal variations of thermal roughness height over a grassland. Bound.-Layer Meteor., 92, 407427, doi:10.1023/A:1002071421362.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. Vandemark, L. Mahrt, D. Vicker, T. Crawford, and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 448, doi:10.1029/2000JD900696.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, doi:10.1023/A:1019969131774.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, L. Mahrt, and C. Nappo, 2013: The relationships among wind, horizontal pressure gradient, and turbulent momentum transport during CASES-99. J. Atmos. Sci., 70, 33973414, doi:10.1175/JAS-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, C. Nappo, and D. H. Lenschow, 2015: Wind and temperature oscillations generated by wave–turbulence interactions in the stably stratified boundary layer. J. Atmos. Sci., 72, 14841503, doi:10.1175/JAS-D-14-0129.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, M. A. LeMone, and L. Mahrt, 2016: The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations. Bound.-Layer Meteor., 160, 83111, doi:10.1007/s10546-016-0134-0.

    • Search Google Scholar
    • Export Citation
  • Taylor, P., and M. Yelland, 2003: On the accuracy of ocean winds and wind stress—An empirical assessment. Wind over Waves II: Forecasting and Fundamentals of Applications, S. G. Sajjadi and J. C. Hunt, Eds., Elsevier, 34–45.

  • Toba, Y., 1998: Wind-forced strong wave interactions and quasi-local equilibrium between wind and windsea with the friction velocity proportionality. Nonlinear Ocean Waves, W. Perrie, Ed., Advances in Fluid Mechanics, Vol. 17, Computational Mechanics Publications, 1–60.

  • Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. Jones, 1990: Wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705721, doi:10.1175/1520-0485(1990)020<0705:WDOSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor., 13, 6185, doi:10.1007/BF00913863.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., P. Mourad, S. Bailey, T. Crawford, C. Vogel, J. Sun, and B. Chapron, 2001: Measured changes in ocean surface roughness due to atmospheric boundary layer rolls. J. Geophys. Res., 106, 46394654, doi:10.1029/1999JC000051.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., B. Chapron, J. Sun, G. Crescenti, and H. Graber, 2004: Ocean wave slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34, 28252842, doi:10.1175/JPO2663.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, J. Sun, and T. Crawford, 2001: Structure of offshore flow. Mon. Wea. Rev., 129, 12511258, doi:10.1175/1520-0493(2001)129<1251:SOOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., and Coauthors, 1998: Observations of sea surface mean square slope under light wind during the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 103, 12 60312 612, doi:10.1029/98JC00780.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., J. B. Edson, J. Hojstrup, and T. Hara, 1999: The budget of turbulence kinetic energy in the marine atmospheric surface layer. Air-Sea Exchange: Physics, Chemistry, and Dynamics, G. Geernaert, Ed., Kluwer Academic Publishers, 153–175.

  • Yelland, M., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541558, doi:10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 88 13
PDF Downloads 230 47 2