Quasi-Spherical Ice in Convective Clouds

Emma Järvinen Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Emma Järvinen in
Current site
Google Scholar
PubMed
Close
,
Martin Schnaiter Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Martin Schnaiter in
Current site
Google Scholar
PubMed
Close
,
Guillaume Mioche Laboratoire de Métérologie et Physique, Clermont-Ferrand, France

Search for other papers by Guillaume Mioche in
Current site
Google Scholar
PubMed
Close
,
Olivier Jourdan Laboratoire de Métérologie et Physique, Clermont-Ferrand, France

Search for other papers by Olivier Jourdan in
Current site
Google Scholar
PubMed
Close
,
Valery N. Shcherbakov Laboratoire de Métérologie et Physique, Clermont-Ferrand, France

Search for other papers by Valery N. Shcherbakov in
Current site
Google Scholar
PubMed
Close
,
Anja Costa Stratosphere Section (IEK-7), Institut für Energie und Klimaforschung, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Anja Costa in
Current site
Google Scholar
PubMed
Close
,
Armin Afchine Stratosphere Section (IEK-7), Institut für Energie und Klimaforschung, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Armin Afchine in
Current site
Google Scholar
PubMed
Close
,
Martina Krämer Stratosphere Section (IEK-7), Institut für Energie und Klimaforschung, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Martina Krämer in
Current site
Google Scholar
PubMed
Close
,
Fabian Heidelberg Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Fabian Heidelberg in
Current site
Google Scholar
PubMed
Close
,
Tina Jurkat Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Tina Jurkat in
Current site
Google Scholar
PubMed
Close
,
Christiane Voigt Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Christiane Voigt in
Current site
Google Scholar
PubMed
Close
,
Hans Schlager Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Hans Schlager in
Current site
Google Scholar
PubMed
Close
,
Leonid Nichman School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Leonid Nichman in
Current site
Google Scholar
PubMed
Close
,
Martin Gallagher School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Martin Gallagher in
Current site
Google Scholar
PubMed
Close
,
Edwin Hirst Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, Hatfield, United Kingdom

Search for other papers by Edwin Hirst in
Current site
Google Scholar
PubMed
Close
,
Carl Schmitt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Carl Schmitt in
Current site
Google Scholar
PubMed
Close
,
Aaron Bansemer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
,
Andy Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andy Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Paul Lawson SPEC Inc., Boulder, Colorado

Search for other papers by Paul Lawson in
Current site
Google Scholar
PubMed
Close
,
Ugo Tricoli University of Heidelberg, Heidelberg, Germany

Search for other papers by Ugo Tricoli in
Current site
Google Scholar
PubMed
Close
,
Klaus Pfeilsticker University of Heidelberg, Heidelberg, Germany

Search for other papers by Klaus Pfeilsticker in
Current site
Google Scholar
PubMed
Close
,
Paul Vochezer Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Paul Vochezer in
Current site
Google Scholar
PubMed
Close
,
Ottmar Möhler Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Ottmar Möhler in
Current site
Google Scholar
PubMed
Close
, and
Thomas Leisner Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Thomas Leisner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Homogeneous freezing of supercooled droplets occurs in convective systems in low and midlatitudes. This droplet-freezing process leads to the formation of a large amount of small ice particles, so-called frozen droplets, that are transported to the upper parts of anvil outflows, where they can influence the cloud radiative properties. However, the detailed microphysics and, thus, the scattering properties of these small ice particles are highly uncertain. Here, the link between the microphysical and optical properties of frozen droplets is investigated in cloud chamber experiments, where the frozen droplets were formed, grown, and sublimated under controlled conditions. It was found that frozen droplets developed a high degree of small-scale complexity after their initial formation and subsequent growth. During sublimation, the small-scale complexity disappeared, releasing a smooth and near-spherical ice particle. Angular light scattering and depolarization measurements confirmed that these sublimating frozen droplets scattered light similar to spherical particles: that is, they had angular light-scattering properties similar to water droplets. The knowledge gained from this laboratory study was applied to two case studies of aircraft measurements in midlatitude and tropical convective systems. The in situ aircraft measurements confirmed that the microphysics of frozen droplets is dependent on the humidity conditions they are exposed to (growth or sublimation). The existence of optically spherical frozen droplets can be important for the radiative properties of detraining convective outflows.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0365.s1.

Corresponding author address: Emma Järvinen, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. E-mail: emma.jaervinen@kit.edu

Abstract

Homogeneous freezing of supercooled droplets occurs in convective systems in low and midlatitudes. This droplet-freezing process leads to the formation of a large amount of small ice particles, so-called frozen droplets, that are transported to the upper parts of anvil outflows, where they can influence the cloud radiative properties. However, the detailed microphysics and, thus, the scattering properties of these small ice particles are highly uncertain. Here, the link between the microphysical and optical properties of frozen droplets is investigated in cloud chamber experiments, where the frozen droplets were formed, grown, and sublimated under controlled conditions. It was found that frozen droplets developed a high degree of small-scale complexity after their initial formation and subsequent growth. During sublimation, the small-scale complexity disappeared, releasing a smooth and near-spherical ice particle. Angular light scattering and depolarization measurements confirmed that these sublimating frozen droplets scattered light similar to spherical particles: that is, they had angular light-scattering properties similar to water droplets. The knowledge gained from this laboratory study was applied to two case studies of aircraft measurements in midlatitude and tropical convective systems. The in situ aircraft measurements confirmed that the microphysics of frozen droplets is dependent on the humidity conditions they are exposed to (growth or sublimation). The existence of optically spherical frozen droplets can be important for the radiative properties of detraining convective outflows.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0365.s1.

Corresponding author address: Emma Järvinen, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. E-mail: emma.jaervinen@kit.edu

Supplementary Materials

    • Supplemental Materials (PDF 982 KB)
Save
  • Abdelmonem, A., E. Järvinen, D. Duft, E. Hirst, S. Vogt, T. Leisner, and M. Schnaiter, 2016: PHIPS-HALO: The airborne particle habit imaging and polar scattering probe. Part I: Design and operation. Atmos. Meas. Tech., 9, 31313144, doi:10.5194/amt-9-3131-2016.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., J.-F. Gayet, and V. Shcherbakov, 2012: On the interpretation of an unusual in-situ measured ice crystal scattering phase function. Atmos. Chem. Phys., 12, 93559364, doi:10.5194/acp-12-9355-2012.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., R. Newton, M. Krämer, J. Meyer, A. Beyer, M. Wendisch, and P. Vochezer, 2014: The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals. Atmos. Res., 142, 214, doi:10.1016/j.atmosres.2013.12.010.

    • Search Google Scholar
    • Export Citation
  • Cole, B., P. Yang, B. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from parasol polarization measurements. Atmos. Chem. Phys., 14, 37393750, doi:10.5194/acp-14-3739-2014.

    • Search Google Scholar
    • Export Citation
  • Connolly, P., C. Saunders, M. Gallagher, K. Bower, M. Flynn, T. Choularton, J. Whiteway, and R. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131, 16951712, doi:10.1256/qj.03.217.

    • Search Google Scholar
    • Export Citation
  • Crépel, O., J.-F. Gayet, J.-F. Fournol, and S. Oshchepkov, 1997: A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests. Ann. Geophys., 15, 460470, doi:10.1007/s005850050460.

    • Search Google Scholar
    • Export Citation
  • de Reus, M., and Coauthors, 2009: Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmos. Chem. Phys., 9, 67756792, doi:10.5194/acp-9-6775-2009.

    • Search Google Scholar
    • Export Citation
  • Diskin, G. S., J. R. Podolske, G. W. Sachse, and T. A. Slate, 2002: Open-path airborne tunable diode laser hygrometer. Diode Lasers and Applications in Atmospheric Sensing, A. Fried, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4817), 196204, doi:10.1117/12.453736.

  • Fahey, D., and Coauthors, 2014: The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques. Atmos. Meas. Tech., 7, 31593251, doi:10.5194/amtd-7-3159-2014.

    • Search Google Scholar
    • Export Citation
  • Febvre, G., and Coauthors, 2009: On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res., 114, D02204, doi:10.1029/2008JD010184.

    • Search Google Scholar
    • Export Citation
  • Frey, W., and Coauthors, 2011: In situ measurements of tropical cloud properties in the West African Monsoon: Upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus. Atmos. Chem. Phys., 11, 55695590, doi:10.5194/acp-11-5569-2011.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., P. V. Hobbs, and H. Gerber, 2001: Shortwave, single-scattering properties of arctic ice clouds. J. Geophys. Res., 106, 15 15515 172, doi:10.1029/2000JD900195.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310, doi:10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., O. Crépel, J. Fournol, and S. Oshchepkov, 1997: A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design. Ann. Geophys., 15, 451459, doi:10.1007/s00585-997-0451-1.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., S. Asano, A. Yamazaki, A. Uchiyama, A. Sinyuk, O. Jourdan, and F. Auriol, 2002: Two case studies of winter continental-type water and mixed-phase stratocumuli over the sea. 1: Microphysical and optical properties. J. Geophys. Res., 107, 4569, doi:10.1029/2001JD001106.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2012a: On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment. Atmos. Chem. Phys., 12, 727744, doi:10.5194/acp-12-727-2012.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2012b: The evolution of microphysical and optical properties of an A380 contrail in the vortex phase. Atmos. Chem. Phys., 12, 66296643, doi:10.5194/acp-12-6629-2012.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in arctic clouds. J. Atmos. Sci., 57, 30213034, doi:10.1175/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013: A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J. Appl. Meteor. Climatol., 52, 22782295, doi:10.1175/JAMC-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. M. Sabin, 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 22522264, doi:10.1175/1520-0469(1989)046<2252:CCNBHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 4164, doi:10.1175/JAS-3360.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from 20° to 60°. J. Atmos. Sci., 66, 35303562, doi:10.1175/2009JAS3107.1.

    • Search Google Scholar
    • Export Citation
  • Järvinen, E., O. Kemppinen, T. Nousiainen, T. Kociok, O. Möhler, T. Leisner, and M. Schnaiter, 2016: Laboratory investigations of mineral dust near-backscattering depolarization ratios. J. Quant. Spectrosc. Radiat. Transfer, 178, 192208, doi:10.1016/j.jqsrt.2016.02.003.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21 36121 375, doi:10.1029/95JD03575.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and F. Yu, 2009: Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett., 36, L01804, doi:10.1029/2008GL036649.

    • Search Google Scholar
    • Export Citation
  • Kaye, P. H., E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, 2008: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett., 33, 15451547, doi:10.1364/OL.33.001545.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, and B. L. Pilson, 2003: In-situ measurements of microphysical properties of mid-latitude and anvil cirrus. Proc. 30th Int. Symp. on Remote Sensing of Environment, Honolulu, HI, International Center for Remote Sensing of Environment, 707710.

  • Lawson, R. P., B. A. Baker, B. L. Pilson, and Q. Mo, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203, doi:10.1175/JAS3803.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Li, C., G. W. Kattawar, and P. Yang, 2004: Effects of surface roughness on light scattering by small particles. J. Quant. Spectrosc. Radiat. Transfer, 89, 123131, doi:10.1016/j.jqsrt.2004.05.016.

    • Search Google Scholar
    • Export Citation
  • Lu, R.-S., G.-Y. Tian, D. Gledhill, and S. Ward, 2006: Grinding surface roughness measurement based on the co-occurrence matrix of speckle pattern texture. Appl. Opt., 45, 88398847, doi:10.1364/AO.45.008839.

    • Search Google Scholar
    • Export Citation
  • Luebke, A., and Coauthors, 2016: The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmos. Chem. Phys., 16, 57935809, doi:10.5194/acp-16-5793-2016.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645, doi:10.1175/BAMS-89-5-629.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Search Google Scholar
    • Export Citation
  • Meyer, J., 2012: Ice crystal measurements with the new particle spectrometer NIXE-CAPS. Schr. Forschungszent. Jülich, Reihe Umwelt/Environ., 160, 34 25034 271.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys., 3, 211223, doi:10.5194/acp-3-211-2003.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett., 3, 025007, doi:10.1088/1748-9326/3/2/025007.

    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248, doi:10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138147, doi:10.1175/1520-0469(1969)026<0138:TSARPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761, doi:10.1175/JAS3869.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, 2012: Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals—Cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys., 12, 10 46510 484, doi:10.5194/acp-12-10465-2012.

    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal surface roughness in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 2005: Formation, properties and climatic effects of contrails. C. R. Phys., 6, 549565, doi:10.1016/j.crhy.2005.05.002.

  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., and Coauthors, 2014: Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates. Atmos. Chem. Phys., 14, 19731985, doi:10.5194/acp-14-1973-2014.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392, doi:10.1016/j.jqsrt.2005.11.052.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., P. Kaye, E. Hirst, and R. Greenaway, 2010: Light scattering by ice particles in the Earth’s atmosphere and related laboratory measurements. Proc. 12th Int. Conf. on Electromagnetic and Light Scattering, Helsinki, Finland, University of Helsinki, 294297.

  • Ulanowski, Z., E. Hirst, P. H. Kaye, and R. Greenaway, 2012: Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns. J. Quant. Spectrosc. Radiat. Transfer, 113, 24572464, doi:10.1016/j.jqsrt.2012.06.019.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., P. H. Kaye, E. Hirst, R. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 16491662, doi:10.5194/acp-14-1649-2014.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Search Google Scholar
    • Export Citation
  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Search Google Scholar
    • Export Citation
  • Voigt, C., and Coauthors, 2010: In-situ observations of young contrails—Overview and selected results from the concert campaign. Atmos. Chem. Phys., 10, 90399056, doi:10.5194/acp-10-9039-2010.

    • Search Google Scholar
    • Export Citation
  • Voigt, C., and Coauthors, 2016: ML-CIRRUS—The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00213.1, in press.

    • Search Google Scholar
    • Export Citation
  • Wagner, R., C. Linke, K.-H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, 2009: A review of optical measurements at the aerosol and cloud chamber AIDA. J. Quant. Spectrosc. Radiat. Transfer, 110, 930949, doi:10.1016/j.jqsrt.2009.01.026.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2016: The ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00255.1, in press.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11591169, doi:10.1016/S0022-4073(02)00347-3.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds—Part I: Single-scattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 19401947, doi:10.1109/TGRS.2008.916471.

    • Search Google Scholar
    • Export Citation
  • Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 27942807, doi:10.1175/JAS-D-13-020.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 714 257 13
PDF Downloads 442 117 9