A Numerical Investigation of Cumulus Thermals

Daniel Hernandez-Deckers Climate Change Research Centre, ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia, and Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá, Colombia

Search for other papers by Daniel Hernandez-Deckers in
Current site
Google Scholar
PubMed
Close
and
Steven C. Sherwood Climate Change Research Centre, ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Steven C. Sherwood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the steady, entraining, updraft plume is widely taken as the foundational concept of cumulus convection, past studies show that convection is typically dominated by thermals that are transient, more isotropic in shape, and possess interior vortical circulations. Here, several thousand such thermals are tracked in cloud-resolving simulations of transient growing convective events. Most tracked thermals are small (with radius R < 300 m), ascend at moderate rates (~ 2–4 m s−1), maintain an approximately constant size as they rise, and have brief (4–5 min) lifetimes, although a few are much larger, faster, and/or longer lived. They show slight vertical elongation, but few, if any, would be described as plumes. As convection deepens, thermals originate higher up, are larger, and rise faster, although radius and ascent rate are only weakly correlated among individual thermals. The main force opposing buoyancy is a nonhydrostatic pressure drag, not mixing of momentum. This drag can be expressed in terms of a drag coefficient cd that decreases as convection intensifies: deep convective thermals are less damped, with cd ~ 0.2, while shallow convective thermals are more damped, with cd ~ 0.6. The expected dependence of cd based on theoretical form and wave drag coefficients for a solid sphere is inconsistent with these results, since it predicts the opposite dependence on the Froude number. Thus, a theory for drag on cumulus thermals is not straightforward. Overall, it is argued that thermals are a more realistic prototype for atmospheric deep convection than plumes, at least for the less organized convection types simulated here.

Corresponding author address: Daniel Hernandez-Deckers, Departamento de Geociencias, Universidad Nacional de Colombia, Av. Carrera 30 #45-03, Bogotá, Colombia. E-mail: dhernandezd@unal.edu.co

Abstract

Although the steady, entraining, updraft plume is widely taken as the foundational concept of cumulus convection, past studies show that convection is typically dominated by thermals that are transient, more isotropic in shape, and possess interior vortical circulations. Here, several thousand such thermals are tracked in cloud-resolving simulations of transient growing convective events. Most tracked thermals are small (with radius R < 300 m), ascend at moderate rates (~ 2–4 m s−1), maintain an approximately constant size as they rise, and have brief (4–5 min) lifetimes, although a few are much larger, faster, and/or longer lived. They show slight vertical elongation, but few, if any, would be described as plumes. As convection deepens, thermals originate higher up, are larger, and rise faster, although radius and ascent rate are only weakly correlated among individual thermals. The main force opposing buoyancy is a nonhydrostatic pressure drag, not mixing of momentum. This drag can be expressed in terms of a drag coefficient cd that decreases as convection intensifies: deep convective thermals are less damped, with cd ~ 0.2, while shallow convective thermals are more damped, with cd ~ 0.6. The expected dependence of cd based on theoretical form and wave drag coefficients for a solid sphere is inconsistent with these results, since it predicts the opposite dependence on the Froude number. Thus, a theory for drag on cumulus thermals is not straightforward. Overall, it is argued that thermals are a more realistic prototype for atmospheric deep convection than plumes, at least for the less organized convection types simulated here.

Corresponding author address: Daniel Hernandez-Deckers, Departamento de Geociencias, Universidad Nacional de Colombia, Av. Carrera 30 #45-03, Bogotá, Colombia. E-mail: dhernandezd@unal.edu.co
Save
  • Allen, R. J., and W. Landuyt, 2014: The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. J. Geophys. Res. Atmos., 119, 48084835, doi:10.1002/2014JD021595.

    • Search Google Scholar
    • Export Citation
  • Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738, doi:10.1175/JAM2231.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, doi:10.1256/qj.03.180.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res. Atmos., 107, 8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 19091922, doi:10.1175/JAMC-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-doppler radar observations. J. Atmos. Sci., 63, 14321450, doi:10.1175/JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, doi:10.1175/2011JAS3658.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2011: Representing the sensitivity of convective cloud systems to tropospheric humidity in General Circulation Models. Surv. Geophys., 33, 637656, doi:10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, doi:10.1175/MWR-D-11-00277.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, doi:10.1256/qj.04.147.

    • Search Google Scholar
    • Export Citation
  • Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56, 22322245, doi:10.1175/1520-0469(1999)056<2232:UADCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, doi:10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 10271043, doi:10.1175/1520-0469(1997)054<1027:TMEPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 10561071, doi:10.1175/1520-0493(1999)127<1056:VVCODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., C. Rio, A. M. Fridlind, A. S. Ackerman, A. D. Del Genio, O. M. Pauluis, A. C. Varble, and J. Fan, 2012: Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res., 117, D19201, doi:10.1029/2012JD017759.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49, 744756.

  • Robinson, F. J., S. C. Sherwood, D. Gerstle, C. Liu, and D. J. Kirshbaum, 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, doi:10.1175/2010JAS3558.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, doi:10.1175/2010JAS3371.1.

  • Romps, D. M., 2016: The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection. J. Adv. Model. Earth Syst., 8, 319344, doi:10.1002/2015MS000537.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, doi:10.1175/JAS-D-15-0042.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and R. Öktem, 2015: Stereo photogrammetry reveals substantial drag on cloud thermals. Geophys. Res. Lett., 42, 50515057, doi:10.1002/2015GL064009.

    • Search Google Scholar
    • Export Citation
  • Sánchez, O., D. J. Raymond, L. Libersky, and A. G. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci., 46, 22802292, doi:10.1175/1520-0469(1989)046<2280:TDOTFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94103, doi:10.1002/qj.49707933908.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and C. Risi, 2012: The HDO/H2O relationship in tropospheric water vapor in an idealized “last-saturation” model. J. Geophys. Res., 117, D19205, doi:10.1029/2012JD018068.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernández-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X.-Y. Huang, and W. Wang, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4, 9194, doi:10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, doi:10.1175/JAS-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144151, doi:10.1002/qj.49708536407.

  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806, doi:10.1175/2008JAS2945.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649, doi:10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2012: Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model. J. Adv. Model. Earth Syst., 4, M09003, doi:10.1029/2012MS000164.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2014: Basic convective element: Bubble or plume? A historical review. Atmos. Chem. Phys., 14, 70197030, doi:10.5194/acp-14-7019-2014.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 580 259 23
PDF Downloads 486 164 19