Tropical–Extratropical Interactions with the MJO Skeleton and Climatological Mean Flow

Shengqian Chen Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Shengqian Chen in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Majda Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
, and
Samuel N. Stechmann Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Samuel N. Stechmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simplified asymptotic models are developed to investigate tropical–extratropical interactions. Two kinds of interactions are illustrated in the model: (i) MJO initiation through extraction of energy from barotropic Rossby waves and (ii) MJO termination via energy transfer to extratropical Rossby waves. A new feature, in comparison to previous simplified models, is that here these waves interact directly in the presence of a climatological mean flow given by the Walker circulation. The simplified models are systems of ordinary differential equations (ODEs) for the amplitudes of barotropic Rossby waves and the MJO, and they are systematically derived from the MJO skeleton model by using multiscale asymptotics. The simplified ODEs allow for rapid investigation of a wide range of model parameters, such as initial conditions and wind shear. Zonally uniform wind shear is shown to have only a minor effect on these interactions here, in contrast to the important role of the zonally varying wind shear associated with the Walker circulation. The models illustrate some realistic features of tropical–extratropical interactions on intraseasonal to seasonal time scales. A key aspect of the models here is that the water vapor and convective activities are interactive components of the model, rather than specified external heating sources.

Corresponding author address: Shengqian Chen, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706. E-mail: sqchen@math.wisc.edu

Abstract

Simplified asymptotic models are developed to investigate tropical–extratropical interactions. Two kinds of interactions are illustrated in the model: (i) MJO initiation through extraction of energy from barotropic Rossby waves and (ii) MJO termination via energy transfer to extratropical Rossby waves. A new feature, in comparison to previous simplified models, is that here these waves interact directly in the presence of a climatological mean flow given by the Walker circulation. The simplified models are systems of ordinary differential equations (ODEs) for the amplitudes of barotropic Rossby waves and the MJO, and they are systematically derived from the MJO skeleton model by using multiscale asymptotics. The simplified ODEs allow for rapid investigation of a wide range of model parameters, such as initial conditions and wind shear. Zonally uniform wind shear is shown to have only a minor effect on these interactions here, in contrast to the important role of the zonally varying wind shear associated with the Walker circulation. The models illustrate some realistic features of tropical–extratropical interactions on intraseasonal to seasonal time scales. A key aspect of the models here is that the water vapor and convective activities are interactive components of the model, rather than specified external heating sources.

Corresponding author address: Shengqian Chen, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706. E-mail: sqchen@math.wisc.edu
Save
  • Adames, A. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, doi:10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and S. N. Stechmann, 2016: Nonlinear traveling wave solutions for MJO skeleton model. Commun. Math. Sci., 14, 571592, doi:10.4310/CMS.2016.v14.n2.a11.

    • Search Google Scholar
    • Export Citation
  • Chen, S., A. J. Majda, and S. N. Stechmann, 2015: Multiscale asymptotics for the skeleton of the Madden–Julian oscillation and tropical–extratropical interactions. Math. Climate Wea. Forecasting, 1, 4369, doi:10.1515/mcwf-2015-0003.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1993: Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: Linear theory. J. Atmos. Sci., 50, 13491372, doi:10.1175/1520-0469(1993)050<1349:MDIOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gloeckler, L. C., and P. E. Roundy, 2013: Modulation of the extratropical circulation by combined activity of the Madden–Julian oscillation and equatorial Rossby waves during boreal winter. Mon. Wea. Rev., 141, 13471357, doi:10.1175/MWR-D-12-00179.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F.-F. Jin, 1991: The initial value problem for tropical perturbations to a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 117, 299317, doi:10.1002/qj.49711749803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2005: A non-oscillatory balanced scheme for an idealized tropical climate model. Part I: Algorithm and validation. Theor. Comput. Fluid Dyn., 19, 331354, doi:10.1007/s00162-005-0170-8.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, Eds., 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, 437 pp.

  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 33333350, doi:10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, Vol. 9, American Mathematical Society, 234 pp.

  • Majda, A. J., and J. A. Biello, 2003: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 60, 18091821, doi:10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393408, doi:10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2011: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68, 30533071, doi:10.1175/JAS-D-11-053.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., R. R. Rosales, E. G. Tabak, and C. V. Turner, 1999: Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances. J. Atmos. Sci., 56, 41184133, doi:10.1175/1520-0469(1999)056<4118:IOLSEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Ogrosky, H. R., and S. N. Stechmann, 2015: The MJO skeleton model with observation-based background state and forcing. Quart. J. Roy. Meteor. Soc., 141, 26542669, doi:10.1002/qj.2552.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, doi:10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2011: Tropical–extratropical interactions. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 437 pp.

  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., D. E. Waliser, A. J. Majda, S. N. Stechmann, and S. Thual, 2015: Evaluating MJO event initiation and decay in the skeleton model using RMM-like index. J. Geophys. Res. Atmos., 120, 486508, doi:10.1002/2015JD023916.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and H. R. Ogrosky, 2014: The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 41, 90979105, doi:10.1002/2014GL062257.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2015: Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Wea. Rev., 143, 395416, doi:10.1175/MWR-D-14-00169.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., and A. J. Majda, 2015: A suite of skeleton models for the MJO with refined vertical structure. Math. Climate Wea. Forecasting, 1, 7095, doi:10.1515/mcwf-2015-0004.

    • Search Google Scholar
    • Export Citation
  • Thual, S., and A. J. Majda, 2016: A skeleton model for the MJO with refined vertical structure. Climate Dyn., 46, 27732786, doi:10.1007/s00382-015-2731-x.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2015: Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle. Climate Dyn., 45, 603618, doi:10.1007/s00382-014-2256-8.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local steady forcing. Mon. Wea. Rev., 100, 518541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38, 554571, doi:10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1982: Seasonality in the local and remote atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 39, 4152, doi:10.1175/1520-0469(1982)039<0041:SITLAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 18381858, doi:10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 16011614, doi:10.1175/2008MWR2686.1.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, doi:10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, doi:10.1175/JAS-D-12-0255.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C.-N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 194 4
PDF Downloads 128 40 6