Impact of Upper-Tropospheric Temperature Anomalies and Vertical Wind Shear on Tropical Cyclone Evolution Using an Idealized Version of the Operational GFDL Hurricane Model

Robert E. Tuleya Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia

Search for other papers by Robert E. Tuleya in
Current site
Google Scholar
PubMed
Close
,
Morris Bender NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Morris Bender in
Current site
Google Scholar
PubMed
Close
,
Thomas R. Knutson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas R. Knutson in
Current site
Google Scholar
PubMed
Close
,
Joseph J. Sirutis NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Joseph J. Sirutis in
Current site
Google Scholar
PubMed
Close
,
Biju Thomas Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Biju Thomas in
Current site
Google Scholar
PubMed
Close
, and
Isaac Ginis Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Isaac Ginis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905–980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SST–stability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast system’s sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m s−1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent.

Corresponding author address: Robert E. Tuleya, Center for Coastal Physical Oceanography, Innovation Park Research Building 1, 4111 Monarch Way, 3rd Floor, Norfolk, VA 23508. E-mail: robert.tuleya@noaa.gov

Abstract

The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905–980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SST–stability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast system’s sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m s−1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent.

Corresponding author address: Robert E. Tuleya, Center for Coastal Physical Oceanography, Innovation Park Research Building 1, 4111 Monarch Way, 3rd Floor, Norfolk, VA 23508. E-mail: robert.tuleya@noaa.gov
Save
  • Bender, M. A., I. Ginis, R. E. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., and D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, doi:10.1175/WAF-D-12-00110.1.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466484, doi:10.1175/1520-0442(2004)017<0466:LEPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2007: Quasi-equilibrium dynamics of the tropical atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 385 pp.

  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 81658170, doi:10.1175/JCLI-D-15-0401.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2002: Tropical cyclones in complex vertical shears. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 7C.1. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_36346.htm.]

  • Fu, H. L., X. Wang, P. C. Chu, X. Zhang, G. Han, and W. Li, 2014: Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific. J. Geophys. Res. Oceans, 119, 80788092, doi:10.1002/2014JC010316.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2015: The relationship between hurricane potential intensity and CAPE. J. Atmos. Sci., 72, 141163, doi:10.1175/JAS-D-14-0008.1.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, X. Zhang, J. W. Bao, K. S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, doi:10.1175/2010MWR3535.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, doi:10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., I.-I. Lin, C. Chou, and R. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, doi:10.1038/ncomms8188.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495, doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181020, doi:10.1126/science.279.5353.1018.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of 21st century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenario. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. A. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893919, doi:10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., G. J. Tripoli, and M. A. Bender, 1979: Design of a movable nested-mesh primitive equation model. Mon. Wea. Rev., 107, 239249, doi:10.1175/1520-0493(1979)107<0239:DOAMNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, doi:10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 13061322, doi:10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., J. J. Shi, W. K. Tao, and K. M. Kim, 2016: What would happen to Superstorm Sandy under the influence of a substantially warmer Atlantic Ocean? Geophys. Res. Lett., 43, 802811, doi:10.1002/2015GL067050.

    • Search Google Scholar
    • Export Citation
  • McClung, T., 2012: Amended: GFDL Hurricane Prediction System changes: Effective May 29, 2012. NWS Tech. Implementation Notice 12–18, 1 pp. [Available online at http://www.nws.noaa.gov/os/notification/tin12-18gfdl_aaa.htm.]

  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–34.

  • Ritchie, E. A., and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 18891905, doi:10.1175/MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121, doi:10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, doi:10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., M. DeMaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 5670, doi:10.1175/WAF972.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., S. Fueglistaler, I. M. Held, T. R. Knutson, and M. Zhao, 2013: Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 38773891, doi:10.1175/JCLI-D-12-00503.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, doi:10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, doi:10.1175/2007MWR2166.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015a: Description and analysis of the ocean component of NOAA’s operational Hurricane Weather Research and Forecasting (HWRF). J. Atmos. Oceanic Technol., 32, 144163, doi:10.1175/JTECH-D-14-00063.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., I. Ginis, and B. Thomas, 2015b: Ocean modeling with flexible initialization for improved coupled tropical cyclone–ocean model prediction. Environ. Modell. Software, 67, 2630, doi:10.1016/j.envsoft.2015.01.003.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., L. Chen, and Y. Yuqing Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 33073322, doi:10.1175/2008MWR2388.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 30323038, doi:10.1175/1520-0493(1999)127<3032:TEODHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 965 387 22
PDF Downloads 465 148 6