Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

Stephen D. Eckermann Space Science Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
Dave Broutman Computational Physics, Inc., Springfield, Virginia

Search for other papers by Dave Broutman in
Current site
Google Scholar
PubMed
Close
,
Jun Ma Computational Physics, Inc., Springfield, Virginia

Search for other papers by Jun Ma in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
Pierre-Dominique Pautet Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah

Search for other papers by Pierre-Dominique Pautet in
Current site
Google Scholar
PubMed
Close
,
Michael J. Taylor Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah

Search for other papers by Michael J. Taylor in
Current site
Google Scholar
PubMed
Close
,
Katrina Bossert GATS, Inc., Boulder, Colorado

Search for other papers by Katrina Bossert in
Current site
Google Scholar
PubMed
Close
,
Bifford P. Williams GATS, Inc., Boulder, Colorado

Search for other papers by Bifford P. Williams in
Current site
Google Scholar
PubMed
Close
,
David C. Fritts GATS, Inc., Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
, and
Ronald B. Smith Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Ronald B. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow layer beneath a zero-wind region at z ~ 83 km. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wave fields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wave fields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward flow accelerations of ~350 m s−1 h−1 and dynamical heating rates of ~8 K h−1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter.

Corresponding author address: Stephen Eckermann, Code 7631, Geospace Science and Technology Branch, Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: stephen.eckermann@nrl.navy.mil

Abstract

On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow layer beneath a zero-wind region at z ~ 83 km. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wave fields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wave fields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward flow accelerations of ~350 m s−1 h−1 and dynamical heating rates of ~8 K h−1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter.

Corresponding author address: Stephen Eckermann, Code 7631, Geospace Science and Technology Branch, Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: stephen.eckermann@nrl.navy.mil
Save
  • Akmaev, R. A., 2007: On the energetics of mean-flow interactions with thermally dissipating gravity waves. J. Geophys. Res., 112, D11125, doi:10.1029/2006JD007908.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, doi:10.1002/2013JD020526.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, doi:10.1029/2009GL038587.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 2746, doi:10.1017/S0022112098001645.

    • Search Google Scholar
    • Export Citation
  • Bossert, K., and Coauthors, 2015: Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 120, 93239337, doi:10.1002/2015JD023197.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. Ma, S. D. Eckermann, and J. Lindeman, 2006: Fourier-ray modeling of transient trapped lee waves. Mon. Wea. Rev., 134, 28492856, doi:10.1175/MWR3232.1.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., S. D. Eckermann, and J. W. Rottman, 2009: Practical application of two turning-point theory to mountain-wave transmission through a wind jet. J. Atmos. Sci., 66, 481494, doi:10.1175/2008JAS2786.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubišić, 2011: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, doi:10.1175/2010MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and C. J. Marks, 1996: An idealized ray model of gravity wave-tidal interactions. J. Geophys. Res., 101, 21 19521 212, doi:10.1029/96JD01660.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and D. L. Wu, 2012: Satellite detection of orographic gravity-wave activity in the winter subtropical stratosphere over Australia and Africa. Geophys. Res. Lett., 39, L21807, doi:10.1029/2012GL053791.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., D. E. Gibson-Wilde, and J. T. Bacmeister, 1998: Gravity wave perturbations of minor constituents: A parcel advection methodology. J. Atmos. Sci., 55, 35213539, doi:10.1175/1520-0469(1998)055<3521:GWPOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., D. Broutman, and J. Lindeman, 2006a: Fourier-ray modeling of short-wavelength trapped lee waves observed in infrared satellite imagery near Jan Mayen. Mon. Wea. Rev., 134, 28302848, doi:10.1175/MWR3218.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., A. Dörnbrack, S. B. Vosper, H. Flentje, M. J. Mahoney, T. P. Bui, and K. S. Carslaw, 2006b: Mountain wave-induced polar stratospheric cloud forecasts for aircraft science flights during SOLVE/THESEO 2000. Wea. Forecasting, 21, 4268, doi:10.1175/WAF901.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2009: High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J. Atmos. Sol.-Terr. Phys., 71, 531551, doi:10.1016/j.jastp.2008.09.036.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Lindeman, D. Broutman, J. Ma, and Z. Boybeyi, 2010: Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles. J. Atmos. Sci., 67, 22602278, doi:10.1175/2010JAS3375.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., D. Broutman, and H. Knight, 2015a: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part II: Analytical solutions. J. Atmos. Sci., 72, 23482365, doi:10.1175/JAS-D-14-0148.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, and D. Broutman, 2015b: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 23302347, doi:10.1175/JAS-D-14-0147.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2010: Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides. J. Geophys. Res., 115, D18112, doi:10.1029/2010JD013850.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., D. Janches, H. Iimura, W. K. Hocking, J. V. Bageston, and N. M. P. Leme, 2012: Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar. J. Geophys. Res., 117, D02105, doi:10.1029/2011JD016651.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2014: Quantifying gravity wave momentum fluxes with mesosphere temperature mappers and correlative instrumentation. J. Geophys. Res. Atmos., 119, 13 58313 603, doi:10.1002/2014JD022150.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, doi:10.1175/BAMS-D-14-00269.1.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, doi:10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27, 116125, doi:10.5670/oceanog.2014.73.

  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, doi:10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoppel, K. W., S. D. Eckermann, L. Coy, G. E. Nedoluha, D. R. Allen, S. D. Swadley, and N. L. Baker, 2013: Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon. Wea. Rev., 141, 33143330, doi:10.1175/MWR-D-13-00003.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., A. Reinecke, and J. D. Doyle, 2014: Orographic wave drag over the Southern Ocean: A linear perspective. J. Atmos. Sci., 71, 42354252, doi:10.1175/JAS-D-14-0035.1.

    • Search Google Scholar
    • Export Citation
  • Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. R. Huning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bull. Amer. Meteor. Soc., 87, 896909, doi:10.1175/BAMS-87-7-896.

    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., and G. R. Swenson, 2003: A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves. J. Geophys. Res., 108, 4151, doi:10.1029/2002JD002474.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2003: Thermal effects of saturating gravity waves in the atmosphere. J. Geophys. Res., 108, 4040, doi:10.1029/2002JD002504.

    • Search Google Scholar
    • Export Citation
  • Miranda, P. M. A., and M. A. Valente, 1997: Critical level resonance in three-dimensional flow past isolated mountains. J. Atmos. Sci., 54, 15741588, doi:10.1175/1520-0469(1997)054<1574:CLRITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., M. J. Taylor, W. R. Pendleton Jr., Y. Zhao, T. Yuan, R. Esplin, and D. McLain, 2014: Advanced mesospheric temperature mapper for high-latitude airglow studies. Appl. Opt., 53, 59345943, doi:10.1364/AO.53.005934.

    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., and Coauthors, 2016: Large amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project. J. Geophys. Res. Atmos., 121, 14311441, doi:10.1002/2015JD024336.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, doi:10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2015: Mountain waves and wakes generated by South Georgia: Implications for drag parametrization. Quart. J. Roy. Meteor. Soc., 141, 28132827, doi:10.1002/qj.2566.

    • Search Google Scholar
    • Export Citation
  • Xu, J., A. K. Smith, R. L. Collins, and C.-Y. She, 2006: Signature of an overturning gravity wave in the mesospheric sodium layer: Comparison of a nonlinear photochemical-dynamical model and lidar observations. J. Geophys. Res., 111, D17301, doi:10.1029/2005JD006749.

    • Search Google Scholar
    • Export Citation
  • Young, K., T. Hock, and C. Martin, 2014: NSF/NCAR GV HIAPER QC dropsonde data, version 3.0. UCAR Earth Observing Laboratory, accessed 4 December 2015, doi:10.5065/D6XW4GTB.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 812 402 112
PDF Downloads 295 80 2