Influence of Tropical Pacific Sea Surface Temperature on the Genesis of Gulf Stream Cyclones

Sebastian Schemm Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway, and Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Sebastian Schemm in
Current site
Google Scholar
PubMed
Close
,
Laura M. Ciasto Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Laura M. Ciasto in
Current site
Google Scholar
PubMed
Close
,
Camille Li Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Camille Li in
Current site
Google Scholar
PubMed
Close
, and
Nils Gunnar Kvamstø Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Nils Gunnar Kvamstø in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the relationship between tropical Pacific sea surface temperature (SST) variability and cyclogenesis over the Gulf Stream region of the North Atlantic. A cyclone identification scheme and Lagrangian trajectories are used to compare preferred cyclogenesis locations and precyclogenesis flow paths associated with three patterns of tropical Pacific SST variability: eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, and La Niña. During EP El Niño and La Niña winters, the upper-level precyclogenesis flow takes a subtropical path over North America and Gulf Stream cyclogenesis predominantly occurs under the North Atlantic jet entrance, which is the climatologically preferred location. In contrast, during CP El Niño winters, when the warmest SST anomalies occur in the central tropical Pacific, the precyclogenesis flow takes a northern path across North America and Gulf Stream cyclogenesis tends to occur farther north under the jet exit. The shift in preferred cyclogenesis is consistent with changes in transient upstream flow perturbations, detected using potential vorticity (PV) streamer frequencies, which are associated with the stationary wave response. Compared to EP El Niño winters, CP El Niño winters exhibit fewer southward-extending streamers and cyclonic (LC2) flow behavior, resulting in precyclogenesis air bypassing the right entrance of the North Atlantic jet. Downstream, Gulf Stream cyclones penetrate deeper into high Arctic latitudes during CP El Niño winters than in other cases. The results highlight distinct signatures of tropical SST anomalies on synoptic-scale atmospheric features and could help constrain future changes in the North Atlantic storm track and the associated poleward heat transport.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0072.s1.

Corresponding author address: Sebastian Schemm, Geophysical Institute, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway. E-mail: sebastian.schemm@uib.no

Abstract

This study investigates the relationship between tropical Pacific sea surface temperature (SST) variability and cyclogenesis over the Gulf Stream region of the North Atlantic. A cyclone identification scheme and Lagrangian trajectories are used to compare preferred cyclogenesis locations and precyclogenesis flow paths associated with three patterns of tropical Pacific SST variability: eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, and La Niña. During EP El Niño and La Niña winters, the upper-level precyclogenesis flow takes a subtropical path over North America and Gulf Stream cyclogenesis predominantly occurs under the North Atlantic jet entrance, which is the climatologically preferred location. In contrast, during CP El Niño winters, when the warmest SST anomalies occur in the central tropical Pacific, the precyclogenesis flow takes a northern path across North America and Gulf Stream cyclogenesis tends to occur farther north under the jet exit. The shift in preferred cyclogenesis is consistent with changes in transient upstream flow perturbations, detected using potential vorticity (PV) streamer frequencies, which are associated with the stationary wave response. Compared to EP El Niño winters, CP El Niño winters exhibit fewer southward-extending streamers and cyclonic (LC2) flow behavior, resulting in precyclogenesis air bypassing the right entrance of the North Atlantic jet. Downstream, Gulf Stream cyclones penetrate deeper into high Arctic latitudes during CP El Niño winters than in other cases. The results highlight distinct signatures of tropical SST anomalies on synoptic-scale atmospheric features and could help constrain future changes in the North Atlantic storm track and the associated poleward heat transport.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0072.s1.

Corresponding author address: Sebastian Schemm, Geophysical Institute, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway. E-mail: sebastian.schemm@uib.no

Supplementary Materials

    • Supplemental Materials (DOCX 1.59 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baggett, C., and S. Lee, 2015: Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci., 72, 15621568, doi:10.1175/JAS-D-14-0334.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Bosart, L., 1999: Observed cyclone life cycles. The Life Cycles of Extratropical Cyclones, M. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 187–213, doi:10.1007/978-1-935704-09-6_15.

  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, doi:10.1175/2011JAS3674.1.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, doi:10.1007/s00382-006-0175-z.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, doi:10.1029/2011GL048084.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and the extratropical Southern Hemisphere climate. J. Climate, 28, 5665, doi:10.1175/JCLI-D-14-00438.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. Gallant, H. J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Revière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, doi:10.1175/JCLI-D-14-00552.1.

    • Search Google Scholar
    • Export Citation
  • Eichler, T., and R. W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 64976518, doi:10.1175/JCLI-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, doi:10.1126/science.1058582.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Jacobs, N. A., G. M. Lackmann, and S. Raman, 2005: The combined effects of Gulf Stream–induced baroclinicity and upper-level vorticity on U.S. East Coast extratropical cyclogenesis. Mon. Wea. Rev., 133, 24942501, doi:10.1175/MWR2969.1.

    • Search Google Scholar
    • Export Citation
  • Kao, H., and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, doi:10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, doi:10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N. Lau, 2012: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, doi:10.1175/JCLI-D-11-00037.1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593599, doi:10.1038/305593a0.

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, doi:10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. A. Mansfield, 1984: Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical east and west Pacific. Nature, 310, 483485, doi:10.1038/310483a0.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, doi:10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnier, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., R. M. Samelson, and E. Skyllingstad, 2010: Air–sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Climate, 23, 26512670, doi:10.1175/2010JCLI3269.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, doi:10.1038/ngeo2783.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, doi:10.5194/gmd-8-2569-2015.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, doi:10.1175/JCLI-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. S. Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, doi:10.1175/JCLI-D-13-00437.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic- wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, doi:10.1175/JAS3912.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 587 329 35
PDF Downloads 328 85 19