Flow Regimes over a Basin Induced by Upstream Katabatic Flows—An Idealized Modeling Study

Manuela Lehner Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Manuela Lehner in
Current site
Google Scholar
PubMed
Close
,
Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
, and
C. David Whiteman Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by C. David Whiteman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized two-dimensional model simulations are performed to study the frequent nocturnal occurrence of downslope-windstorm-type flows in Arizona’s Meteor Crater. The model topography is a simplified representation of the Meteor Crater and its surroundings, with an approximately 1° mesoscale slope upstream and downstream of the crater basin. A strong surface-based inversion and a katabatic flow develop above the mesoscale slope as a result of radiational cooling. The temperature and flow profiles are evaluated against observations over low-angle slopes from two field campaigns, showing that the model’s turbulence parameterization has a strong impact on the near-surface conditions. The interaction of the katabatic flow with the basin topography leads to the formation of waves and hydraulic jumps over the basin. The simplified two-dimensional simulations show good qualitative agreement with observations of downslope-windstorm-type flows from the Meteor Crater. The sensitivity of the flow solution over the basin to basin depth, basin width, and background wind speed is investigated. The resulting flow regimes include a sweeping of the basin atmosphere, a wake over the upstream crater sidewall, waves over the basin with one or two wave crests, and a hydraulic jump. The regimes are discussed in the context of stratified flow over mountains.

Corresponding author address: Manuela Lehner, Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria. E-mail: manuela.lehner@uibk.ac.at

Abstract

Idealized two-dimensional model simulations are performed to study the frequent nocturnal occurrence of downslope-windstorm-type flows in Arizona’s Meteor Crater. The model topography is a simplified representation of the Meteor Crater and its surroundings, with an approximately 1° mesoscale slope upstream and downstream of the crater basin. A strong surface-based inversion and a katabatic flow develop above the mesoscale slope as a result of radiational cooling. The temperature and flow profiles are evaluated against observations over low-angle slopes from two field campaigns, showing that the model’s turbulence parameterization has a strong impact on the near-surface conditions. The interaction of the katabatic flow with the basin topography leads to the formation of waves and hydraulic jumps over the basin. The simplified two-dimensional simulations show good qualitative agreement with observations of downslope-windstorm-type flows from the Meteor Crater. The sensitivity of the flow solution over the basin to basin depth, basin width, and background wind speed is investigated. The resulting flow regimes include a sweeping of the basin atmosphere, a wake over the upstream crater sidewall, waves over the basin with one or two wave crests, and a hydraulic jump. The regimes are discussed in the context of stratified flow over mountains.

Corresponding author address: Manuela Lehner, Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria. E-mail: manuela.lehner@uibk.ac.at
Save
  • Adler, B., C. D. Whiteman, S. W. Hoch, M. Lehner, and N. Kalthoff, 2012: Warm-air intrusions in Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 51, 10101025, doi:10.1175/JAMC-D-11-0158.1.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., and R. A. Pielke, 1986: Interactions of nocturnal slope flows with ambient winds. Bound.-Layer Meteor., 37, 183195, doi:10.1007/BF00122763.

    • Search Google Scholar
    • Export Citation
  • Axelsen, S. L., and H. van Dop, 2009a: Large-eddy simulation of katabatic winds. Part 1: Comparison with observations. Acta Geophys., 57, 803836, doi:10.2478/s11600-009-0041-6.

    • Search Google Scholar
    • Export Citation
  • Axelsen, S. L., and H. van Dop, 2009b: Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models. Acta Geophys., 57, 837856, doi:10.2478/s11600-009-0042-5.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flow. Cambridge University Press, 482 pp.

  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1962: Theory of the vortex breakdown phenomenon. J. Fluid Mech., 14, 593629, doi:10.1017/S0022112062001482.

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., R. J. Beare, J. M. Edwards, A. P. Lock, S. J. Keogh, S. F. Milton, and D. N. Walters, 2008: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model. Bound.-Layer Meteor., 128, 117132, doi:10.1007/s10546-008-9275-0.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. TM-104606, 85 pp.

  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. A. Jiménez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679, doi:10.1175/JAS3903.1.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Denby, B., 1999: Second-order modelling of turbulence in katabatic flows. Bound.-Layer Meteor., 92, 6598, doi:10.1023/A:1001796906927.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, doi:10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2007: Rotor and subrotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci., 64, 42024221, doi:10.1175/2007JAS2352.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2003a: Downslope winds. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Elsevier Science Ltd., 644–650.

  • Durran, D. R., 2003b: Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Elsevier Science Ltd., 1161–1169.

  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, doi:10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and A. Shapiro, 2009: Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys., 57, 9811010, doi:10.2478/s11600-009-0027-4.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., D. Goldstein, and T. Lund, 2010: High-resolution numerical studies of stable boundary layer flows in a closed basin: Evolution of steady and oscillatory flows in an axisymmetric Arizona Meteor Crater. J. Geophys. Res., 115, D18109, doi:10.1029/2009JD013359.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 122 pp., doi:10.5065/D60Z716B.

  • Grisogono, B., and D. Belušić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus, 61A, 116, doi:10.1111/j.1600-0870.2008.00369.x.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and S. L. Axelsen, 2012: A note on the pure katabatic wind maximum over gentle slopes. Bound.-Layer Meteor., 145, 527538, doi:10.1007/s10546-012-9746-1.

    • Search Google Scholar
    • Export Citation
  • Grubis̆ić, V., and B. J. Billings, 2007: The intense lee-wave rotor event of Sierra Rotors IOP 8. J. Atmos. Sci., 64, 41784201, doi:10.1175/2006JAS2008.1.

    • Search Google Scholar
    • Export Citation
  • Grubis̆ić, V., and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 12051228, doi:10.1175/2008JAS2885.1.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 2003: Prediction of jet speed and height in katabatic flow. Extended Abstracts, EGS–AGU–EUG Joint Assembly, Nice, France, EGS, AGU, and EUG, 8479.

  • Haiden, T., and C. D. Whiteman, 2005: Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteor., 44, 113126, doi:10.1175/JAM-2182.1.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., C. D. Whiteman, S. W. Hoch, and M. Lehner, 2011: A mass flux model of nocturnal cold-air intrusions into a closed basin. J. Appl. Meteor. Climatol., 50, 933943, doi:10.1175/2010JAMC2540.1.

    • Search Google Scholar
    • Export Citation
  • Holden, J. J., S. H. Derbyshire, and S. E. Belcher, 2000: Tethered balloon observations of the nocturnal stable boundary layer in a valley. Bound.-Layer Meteor., 97, 124, doi:10.1023/A:1002628924673.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., and J. C. Doran, 1988: The turbulence structure of nocturnal slope flow. J. Atmos. Sci., 45, 605616, doi:10.1175/1520-0469(1988)045<0605:TTSONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. L., G. Mayr, and S. Vosper, 2012: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 121–218, doi:10.1007/978-94-007-4098-3_3.

  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary layers. J. Atmos. Sci., 63, 617633, doi:10.1175/JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Katurji, M., S. Zhong, M. Kiefer, and P. Zawar-Reza, 2013: Numerical simulations of turbulent flow within and in the wake of a small basin. J. Geophys. Res. Atmos., 118, 60526063, doi:10.1002/jgrd.50519.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and S. Zhong, 2011: An idealized modeling study of nocturnal cooling processes inside a small enclosed basin. J. Geophys. Res., 116, D20127, doi:10.1029/2011JD016119.

    • Search Google Scholar
    • Export Citation
  • Kimura, F., and P. Manins, 1988: Blocking in periodic valleys. Bound.-Layer Meteor., 44, 137169, doi:10.1007/BF00117296.

  • Lareau, N. P., and J. D. Horel, 2015: Turbulent erosion of persistent cold-air pools: Numerical simulations. J. Atmos. Sci., 72, 14091427, doi:10.1175/JAS-D-14-0173.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, J., and J. Horel, 2015: Analysis of the 1 December 2011 Wasatch downslope windstorm. Wea. Forecasting, 30, 115135, doi:10.1175/WAF-D-13-00120.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., and Coauthors, 2016: The METCRAX II field experiment: A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 97, 217235, doi:10.1175/BAMS-D-14-00238.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., K. Ikeda, R. L. Grossmann, and M. W. Rotach, 2003: Horizontal variability of 2-m temperature at night during CASES-97. J. Atmos. Sci., 60, 24312449, doi:10.1175/1520-0469(2003)060<2431:HVOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., and T.-A. Wang, 1996: Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge. J. Atmos. Sci., 53, 139158, doi:10.1175/1520-0469(1996)053<0139:FRATDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lock, A., 2011: Stable boundary layer modelling at the Met Office. Proc. ECMWF GABLS Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF, 137–148.

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL-parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–79.

  • Mason, P. J., and A. R. Brown, 1999: On subgrid models and filter operations in large eddy simulations. J. Atmos. Sci., 56, 21012114, doi:10.1175/1520-0469(1999)056<2101:OSMAFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., 2011: Advancing closures for stably stratified turbulence in global atmospheric models. Proc. ECMWF GABLS Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF, 63–74.

  • Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteor. Climatol., 49, 19061912, doi:10.1175/2010JAMC2516.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, A., and A. R. Brown, 2007: The role of surface heterogeneity in modelling the stable boundary layer. Bound.-Layer Meteor., 122, 517534, doi:10.1007/s10546-006-9119-8.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mobbs, S. D., and Coauthors, 2005: Observations of downslope winds and rotors in the Falkland Islands. Quart. J. Roy. Meteor. Soc., 131, 329351, doi:10.1256/qj.04.51.

    • Search Google Scholar
    • Export Citation
  • Rafkin, S. C. R., R. M. Haberle, and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System: Model description and selected simulations. Icarus, 151, 228256, doi:10.1006/icar.2001.6605.

    • Search Google Scholar
    • Export Citation
  • Richner, H., and P. Hächler, 2012: Understanding and forecasting Alpine foehn. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 219–260, doi:10.1007/978-94-007-4098-3_4.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Seluchi, M., F. A. Norte, P. Satyamurty, and S. C. Chou, 2003: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Wea. Forecasting, 18, 481501, doi:10.1175/1520-0434(2003)18<481:AOTSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P. F., and S. B. Vosper, 2006: A flow regime diagram for forecasting lee waves, rotors and downslope winds. Meteor. Appl., 13, 179195, doi:10.1017/S1350482706002088.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P. F., S. B. Vosper, and A. R. Brown, 2014: Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quart. J. Roy. Meteor. Soc., 140, 715728, doi:10.1002/qj.2159.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475, 113 pp., doi:10.5065/D68S4MVH.

  • Skyllingstad, E. D., 2003: Large-eddy simulation of katabatic flows. Bound.-Layer Meteor., 106, 217243, doi:10.1023/A:1021142828676.

  • Smith, C. M., and E. D. Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 30653080, doi:10.1175/MWR2982.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., and F. Porté-Agel, 2014: An intercomparison of subgrid models for large-eddy simulation of katabatic flows. Quart. J. Roy. Meteor. Soc., 140, 12941303, doi:10.1002/qj.2212.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

  • Smith, S. A., A. R. Brown, S. B. Vosper, P. A. Murkin, and A. T. Veal, 2010: Observations and simulations of cold air pooling in valleys. Bound.-Layer Meteor., 134, 85108, doi:10.1007/s10546-009-9436-9.

    • Search Google Scholar
    • Export Citation
  • Soontiens, N., M. Stastna, and M. L. Waite, 2013: Numerical simulations of waves over large crater topography in the atmosphere. J. Atmos. Sci., 70, 12161232, doi:10.1175/JAS-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanism of cloud-radiation interaction in the tropics and midlatitude. J. Atmos. Sci., 53, 26242651, doi:10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, doi:10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Vosper, S. B., and A. R. Brown, 2008: Numerical simulations of sheltering in valleys: The formation of nighttime cold-air pools. Bound.-Layer Meteor., 127, 429448, doi:10.1007/s10546-008-9272-3.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and S. Zhong, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: Observations. J. Appl. Meteor. Climatol., 47, 20232038, doi:10.1175/2007JAMC1669.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 18941905, doi:10.1175/2010JAMC2470.1.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2012: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 35–119, doi:10.1007/978-94-007-4098-3_2.

  • Zhong, S., and C. D. Whiteman, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling. J. Appl. Meteor. Climatol., 47, 20392057, doi:10.1175/2007JAMC1670.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and F. K. Chow, 2012: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 591–653, doi:10.1007/978-94-007-4098-3_10.

  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, V. L’vov, and I. Rogachevskii, 2009: Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves. Bound.-Layer Meteor., 133, 139164, doi:10.1007/s10546-009-9424-0.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, and I. Esau, 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Bound.-Layer Meteor., 146, 341373, doi:10.1007/s10546-012-9768-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 83 3
PDF Downloads 167 64 4