Deep Convection and Column Water Vapor over Tropical Land versus Tropical Ocean: A Comparison between the Amazon and the Tropical Western Pacific

Kathleen A. Schiro Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kathleen A. Schiro in
Current site
Google Scholar
PubMed
Close
,
J. David Neelin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
,
David K. Adams Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by David K. Adams in
Current site
Google Scholar
PubMed
Close
, and
Benjamin R. Lintner Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationships between the onset of tropical deep convection, column water vapor (CWV), and other measures of conditional instability are analyzed with 2 yr of data from the DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil, as part of the Green Ocean Amazon (GOAmazon) campaign, and with 3.5 yr of CWV derived from global positioning system meteorology at a nearby site in Manaus, Brazil. Important features seen previously in observations over tropical oceans—precipitation conditionally averaged by CWV exhibiting a sharp pickup at high CWV, and the overall shape of the CWV distribution for both precipitating and nonprecipitating points—are also found for this tropical continental region. The relationship between rainfall and CWV reflects the impact of lower-free-tropospheric moisture variability on convection. Specifically, CWV over land, as over ocean, is a proxy for the effect of free-tropospheric moisture on conditional instability as indicated by entraining plume calculations from GOAmazon data. Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep convective layer. Although sensitivity of buoyancy to other controls in the Amazon is suggested, such as boundary layer and microphysical processes, the CWV dependence is consistent with the observed precipitation onset. Overall, leading aspects of the relationship between CWV and the transition to deep convection in the Amazon have close parallels over tropical oceans. The relationship is robust to averaging on time and space scales appropriate for convective physics but is strongly smoothed for averages greater than 3 h or 2.5°.

Denotes Open Access content.

Corresponding author address: Kathleen A. Schiro, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Box 951565, Los Angeles, CA 90095. E-mail: kschiro@atmos.ucla.edu

Abstract

The relationships between the onset of tropical deep convection, column water vapor (CWV), and other measures of conditional instability are analyzed with 2 yr of data from the DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil, as part of the Green Ocean Amazon (GOAmazon) campaign, and with 3.5 yr of CWV derived from global positioning system meteorology at a nearby site in Manaus, Brazil. Important features seen previously in observations over tropical oceans—precipitation conditionally averaged by CWV exhibiting a sharp pickup at high CWV, and the overall shape of the CWV distribution for both precipitating and nonprecipitating points—are also found for this tropical continental region. The relationship between rainfall and CWV reflects the impact of lower-free-tropospheric moisture variability on convection. Specifically, CWV over land, as over ocean, is a proxy for the effect of free-tropospheric moisture on conditional instability as indicated by entraining plume calculations from GOAmazon data. Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep convective layer. Although sensitivity of buoyancy to other controls in the Amazon is suggested, such as boundary layer and microphysical processes, the CWV dependence is consistent with the observed precipitation onset. Overall, leading aspects of the relationship between CWV and the transition to deep convection in the Amazon have close parallels over tropical oceans. The relationship is robust to averaging on time and space scales appropriate for convective physics but is strongly smoothed for averages greater than 3 h or 2.5°.

Denotes Open Access content.

Corresponding author address: Kathleen A. Schiro, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Box 951565, Los Angeles, CA 90095. E-mail: kschiro@atmos.ucla.edu
Save
  • Adams, D. K., R. M. S. Fernandes, and J. M. F. Maia, 2011: GNSS precipitable water vapor from an Amazonian rain forest flux tower. J. Atmos. Oceanic Technol., 28, 11921198, doi:10.1175/JTECH-D-11-00082.1.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, doi:10.1002/grl.50573.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Coauthors, 2015: The Amazon Dense GNSS Meteorological Network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, doi:10.1175/BAMS-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, doi:10.1002/2015GL066957.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107, doi:10.1175/1520-0469(1948)005<0103:ANOCGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. J. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bergemann, M., and C. Jakob, 2016: How important is tropospheric humidity for coastal rainfall in the tropics? Geophys. Res. Lett., 43, 58605868, doi:10.1002/2016GL069255.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107, 4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., A. H. Sobel, and Y. Kushnir, 2006: GCM precipitation biases in the tropical Atlantic. J. Climate, 19, 935958, doi:10.1175/JCLI3673.1.

    • Search Google Scholar
    • Export Citation
  • Boing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, doi:10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117, doi:10.1256/qj.03.132.

    • Search Google Scholar
    • Export Citation
  • Collow, A. B., M. A. Miller, and L. Trabachino, 2016: Cloudiness over the Amazon rainforest: Meteorology and thermodynamics. J. Geophys. Res. Atmos., 121, 79908005, doi:10.1002/2016JD024848.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Gandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection.1st ed. Oxford University Press, 580 pp.

  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864, doi:10.1175/1520-0469(2003)060<0847:MLCSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Impact of explicit atmosphere–ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci., 63, 22892306, doi:10.1175/JAS3740.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104, doi:10.1256/qj.03.135.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., doi:10.1175/JAS-D-15-0367.1, in press.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 6, 938949, doi:10.1002/2014MS000335.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Hirota, H., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial distributions of and temporal variations in precipitation over tropical oceans. J. Climate, 27, 87078723, doi:10.1175/JCLI-D-13-00701.1.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., and Y. N. Takayabu, 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Climate Dyn., 41, 29092920, doi:10.1007/s00382-013-1839-0.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, doi:10.1175/2009JAS3284.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2013: The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci., 70, 13421369, doi:10.1175/JAS-D-12-0227.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island Climate Research Facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Mon. Wea. Rev., 139, 32083223, doi:10.1175/2011MWR3636.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, doi:10.1002/2014RG000468.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Climate, 27, 53795395, doi:10.1175/JCLI-D-13-00497.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, doi:10.1002/jgrd.50640.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., E. J. Zipser, S. K. Krueger, and M. A. Zulauf, 2008: Cloud-resolving modeling of deep convection during KWAJEX. Part I: Comparison to TRMM satellite and ground-based radar observations. Mon. Wea. Rev., 136, 26992712, doi:10.1175/2007MWR2258.1.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1999: Automatic self-calibration of ARM microwave radiometers. Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., CRC Press, 433–443.

  • Lintner, B. R., and J. D. Neelin, 2007: A prototype for convective margin shifts. Geophys. Res. Lett., 34, L05812, doi:10.1029/2006GL027305.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2008: Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett., 35, L16701, doi:10.1029/2008GL034298.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2009: Soil moisture impacts on convective margins. J. Hydrometeor., 10, 10261039, doi:10.1175/2009JHM1094.1.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2010: Tropical South America–Atlantic sector convective margins and their relationship to low-level inflow. J. Climate, 23, 26712685, doi:10.1175/2009JCLI3301.1.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., C. E. Holloway, and J. D. Neelin, 2011: Column water vapor statistics and their relationship to deep convection, vertical and horizontal circulation, and moisture structure at Nauru. J. Climate, 24, 54545466, doi:10.1175/JCLI-D-10-05015.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-train data to estimate convective buoyancy and entrainment. Geophys. Res. Lett., 37, L09804, doi:10.1029/2010GL042904.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., X. Ji, J. D. Neelin, and C. R. Mechoso, 2011: Mechanisms for precipitation variability of the eastern Brazil/SACZ convective margin. J. Climate, 24, 34453456, doi:10.1175/2011JCLI4070.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237, doi:10.1175/1520-0469(1954)011<0220:SROATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, doi:10.5194/acp-16-4785-2016.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432466, doi:10.1175/JAS-D-12-0273.1.

    • Search Google Scholar
    • Export Citation
  • Morris, V. R., 2006: Microwave radiometer (MWR) handbook. Atmospheric Radiation Measurement Tech. Rep. ARM TR-016, 20 pp.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. R. Lintner, B. Tian, Q. B. Li, L. Zhang, P. K. Patra, M. T. Chahine, and S. N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tracers. Geophys. Res. Lett., 37, L05804, doi:10.1029/2009GL041726.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 29312946, doi:10.1175/JCLI-D-12-00314.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. Yoneyama, and J.-L. Redelsperger, 2000: The evolution of the tropical western Pacific atmosphere–ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548, doi:10.1002/qj.49712656307.

    • Search Google Scholar
    • Export Citation
  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, doi:10.1038/nphys314.

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, doi:10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, doi:10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and D. J. Torres, 1998: Fundamental moist modes of the equatorial troposphere. J. Atmos. Sci., 55, 17711790, doi:10.1175/1520-0469(1998)055<1771:FMMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2000: Instability and large-scale circulations in a two-column model of the tropical troposphere. Quart. J. Roy. Meteor. Soc., 126, 31173135, doi:10.1002/qj.49712657007.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., Ž. Fuchs, S. Gjorgjievska, and S. Sessions, 2015: Balanced dynamics and convection in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 10931116, doi:10.1002/2015MS000467.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA–COARE. J. Atmos. Sci., 59, 24382457, doi:10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ridout, J., 2002: Sensitivity of tropical Pacific convection to dry layers at mid- to upper levels: Simulation and parameterization tests. J. Atmos. Sci., 59, 33623381, doi:10.1175/1520-0469(2002)059<3362:SOTPCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, doi:10.1002/2014JD022948.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, doi:10.1175/JAS-D-11-0164.1.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2014: Deep convective transition characteristics in the NCAR CCSM and changes under global warming. J. Climate, 27, 92149232, doi:10.1175/JCLI-D-13-00747.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, doi:10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127, 17771795, doi:10.1175/1520-0493(1999)127<1777:OEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res., 109, D20119, doi:10.1029/2004JD004811.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, doi:10.1175/JAS3888.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449455, doi:10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444, doi:10.1175/1520-0493(2004)132<0422:LMADCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, doi:10.1175/JAS-D-11-028.1.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, doi:10.1175/JAS-D-13-0268.1.

    • Search Google Scholar
    • Export Citation
  • Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep convection over land. Quart. J. Roy. Meteor. Soc., 138, 11351149, doi:10.1002/qj.1868.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical most thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001a: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001b: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: