Contribution of Tropical Waves to the Formation of Supertyphoon Megi (2010)

Juan Fang Key Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Juan Fang in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques (ADAPT), The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Through observational analysis and numerical simulations, this study examines the roles of the Madden–Julian oscillation (MJO) and tropical waves in the three-stage formation of Supertyphoon Megi (2010) including 1) convective bursts followed by vorticity aggregation, 2) vortex rearrangement during decaying convection, and 3) convective reinvigoration and vortex intensification. The MJO was responsible for preconditioning the large-scale circulation and low-level moisture favorable for convection during all stages, while the counterpropagating Kelvin and equatorial Rossby (ER) waves brought low-level convergence and cyclonic vorticity anomalies to enhance massive convection in the western tropical Pacific in stage 1. Convection strengthened the vorticity anomalies nearby, which subsequently developed into Megi’s embryo by the end of stage 1 through merging with the positive vorticity anomaly carried by a westward-propagating mixed Rossby–gravity and tropical depression (MRG–TD)-type wave. The ER- and MRG–TD-type waves might also contribute to Megi’s formation through increasing low-level southwesterlies to the southwest of the precursor during stages 2 and 3. These tropical waves also indirectly affect Megi’s genesis through modulating surroundings near the precursor. Without the MJO, the low-level vorticity anomaly to the near west of the precursor would intensify more effectively and develop into a tropical cyclone instead of the observed Megi. Removing the Kelvin or ER wave would enhance convection to the far west of Megi’s precursor, which was less favorable for low-level convergence in the region of the precursor, and thus the formation of Megi.

Corresponding author address: Dr. Juan Fang, Key Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing 210023, China. E-mail: fangjuan@nju.edu.cn

Abstract

Through observational analysis and numerical simulations, this study examines the roles of the Madden–Julian oscillation (MJO) and tropical waves in the three-stage formation of Supertyphoon Megi (2010) including 1) convective bursts followed by vorticity aggregation, 2) vortex rearrangement during decaying convection, and 3) convective reinvigoration and vortex intensification. The MJO was responsible for preconditioning the large-scale circulation and low-level moisture favorable for convection during all stages, while the counterpropagating Kelvin and equatorial Rossby (ER) waves brought low-level convergence and cyclonic vorticity anomalies to enhance massive convection in the western tropical Pacific in stage 1. Convection strengthened the vorticity anomalies nearby, which subsequently developed into Megi’s embryo by the end of stage 1 through merging with the positive vorticity anomaly carried by a westward-propagating mixed Rossby–gravity and tropical depression (MRG–TD)-type wave. The ER- and MRG–TD-type waves might also contribute to Megi’s formation through increasing low-level southwesterlies to the southwest of the precursor during stages 2 and 3. These tropical waves also indirectly affect Megi’s genesis through modulating surroundings near the precursor. Without the MJO, the low-level vorticity anomaly to the near west of the precursor would intensify more effectively and develop into a tropical cyclone instead of the observed Megi. Removing the Kelvin or ER wave would enhance convection to the far west of Megi’s precursor, which was less favorable for low-level convergence in the region of the precursor, and thus the formation of Megi.

Corresponding author address: Dr. Juan Fang, Key Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing 210023, China. E-mail: fangjuan@nju.edu.cn
Save
  • Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossby–gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 28372855, doi:10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, doi:10.1175/MWR3087.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., 2012: A comparison of the transition of equatorial waves between two types of ENSO events in a multilevel model. J. Atmos. Sci., 69, 23642378, doi:10.1175/JAS-D-11-0292.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variation of the mixed Rossby–gravity waves and their impact on tropical cyclogenesis in the western North Pacific. J. Climate, 22, 535549, doi:10.1175/2008JCLI2221.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Chou, 2014: Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon. Wea. Rev., 142, 7993, doi:10.1175/MWR-D-13-00207.1.

    • Search Google Scholar
    • Export Citation
  • Ching, L., C.-H. Sui, and M.-J. Yang, 2010: An analysis of the multiscale nature of tropical cyclone activities in June 2004: Climate background. J. Geophys. Res., 115, D24108, doi:10.1029/2010JD013803.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, doi:10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672, doi:10.1175/2009JAS3115.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogsett, W., and D.-L. Zhang, 2010: Genesis of Typhoon Chanchu (2006) from a westerly wind burst associated with the MJO. Part I: Evolution of a vertically tilted precursor vortex. J. Atmos. Sci., 67, 37743792, doi:10.1175/2010JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779, doi:10.1007/BF01022521.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., F. Mounier, N. M. J. Hall, S. Leroux, B. Sultan, and G. N. Kiladis, 2009: Dynamics of the West African monsoon. Part IV: Analysis of 25–90-day variability of convection and the role of the Indian monsoon. J. Climate, 22, 15411565, doi:10.1175/2008JCLI2314.1.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., N. M. Truong, H. T. Mai, and N.-D. Thanh, 2012: Sensitivity of the track and intensity forecasts of Typhoon Megi (2010) to satellite-derived atmospheric motion vectors with the ensemble Kalman filter. J. Atmos. Sci., 29, 17941810, doi:10.1175/JTECH-D-12-00020.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Ko, D. S., S.-Y. Chao, C.-C. Wu, and I.-I. Lin, 2014: Impacts of Typhoon Megi (2010) on the South China Sea. J. Geophys. Res. Oceans, 119, 44744489, doi:10.1002/2013JC009785.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401411.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, doi:10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2007: Seasonality and regionality of the Madden–Julian oscillation, Kelvin wave, and equatorial Rossby wave. J. Atmos. Sci., 64, 44004416, doi:10.1175/2007JAS2179.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17, 24272440, doi:10.1175/1520-0442(2004)017<2427:IVOTAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., K. Lombardo, and D. Vollaro, 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64, 13011317, doi:10.1175/JAS3902.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Qian, C., F. Zhang, B. W. Green, J. Zhang, and X. Zhou, 2013: Probabilistic evaluation of the dynamics and prediction of Supertyphoon Megi (2010). Wea. Forecasting, 28, 15621577, doi:10.1175/WAF-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, doi:10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., 2015: Kelvin waves and tropical cyclogenesis: A global survey. Mon. Wea. Rev., 143, 39964011, doi:10.1175/MWR-D-15-0111.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2009: A case study of an outbreak of twin tropical cyclones. Mon. Wea. Rev., 137, 863875, doi:10.1175/2008MWR2541.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734, doi:10.1175/MWR-D-10-05060.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and K. I. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209, doi:10.1175/2010JAS3396.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, doi:10.1175/MWR-D-11-00110.1.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., W.-K. Tao, Y.-L. Lin, and A. Laing, 2012: Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves. J. Geophys. Res., 117, D13114, doi:10.1029/2012JD017450.

    • Search Google Scholar
    • Export Citation
  • Shi, W., J. Fei, X. Huang, X. Cheng, J. Ding, and Y. He, 2014: A numerical study on the combined effect of midlatitude and low-latitude systems on the abrupt track deflection of Typhoon Megi (2010). Mon. Wea. Rev., 142, 24832501, doi:10.1175/MWR-D-13-00283.1.

    • Search Google Scholar
    • Export Citation
  • Shu, S., and F. Zhang, 2015: Influence of equatorial waves on the genesis of Super Typhoon Haiyan (2013). J. Atmos. Sci., 72, 45914613, doi:10.1175/JAS-D-15-0016.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, doi:10.1029/1999GL011043.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960, doi:10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221245.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012a: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, doi:10.1175/MWR-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck, 2012b: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214, doi:10.1175/MWR-D-11-00305.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 6580, doi:10.6057/2013TCRR02.01.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Characteristics of convective processes and vertical vorticity from the tropical wave to tropical cyclone stage in a high-resolution numerical model simulation of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896915, doi:10.1175/JAS-D-13-0256.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H.-R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829, doi:10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., T. Li, and M. Peng, 2013: Tropical cyclogenesis in the western North Pacific as revealed by the 2008–09 YOTC data. Wea. Forecasting, 28, 10381056, doi:10.1175/WAF-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: The Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1842 1351 539
PDF Downloads 312 51 6