• Beven, J. L., and et al. , 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, doi:10.1175/2007MWR2074.1.

  • Black, P. G., , and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 13481366, doi:10.1175/1520-0469(1971)028<1348:OTASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., , C. W. Landsea, , and E. J. Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 49 pp. [Available online at http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.]

  • Brand, S., 1972: Very large and very small typhoons of the western North Pacific Ocean. J. Meteor. Soc. Japan, 50, 332341.

  • Cecil, D. J., , E. J. Zipser, , and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Challa, M., , and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 16031618, doi:10.1175/1520-0469(1980)037<1603:EOEFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and R. T. Williams, 1987: Analytical and numerical studies of the beta effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., , and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, doi:10.1002/qj.2292.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuickSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Demuth, J., , M. DeMaria, , and J. A. Knaff, 2006: Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., , and R. A. Houze, 2013: Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos. Sci., 70, 504523, doi:10.1175/JAS-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, J., , and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, doi:10.1175/MWR-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, doi:10.1175/2010JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., , and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Quart. J. Roy. Meteor. Soc., 109, 187209, doi:10.1002/qj.49710945909.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structure changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Irish, J. L., , D. T. Resio, , and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, doi:10.1175/2008JPO3727.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritcsh scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 246 pp., doi:10.1007/978-1-935704-13-3_16.

  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, doi:10.1175/MWR-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, doi:10.1175/MWR3155.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., , and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, doi:10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, S. K., , S. P. Longmore, , and D. A. Molenari, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., , Y. Wang, , and Y. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 31443163, doi:10.1175/JAS-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., , Y. Wang, , and Y. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity—A revisit. J. Atmos. Sci., 72, 13231345, doi:10.1175/JAS-D-14-0224.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., , J. Fei, , X. Huang, , and X. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120140, doi:10.1175/JAS-D-14-0199.1.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., , and H. Riehl, 1960: On the dynamics and energy transformations in a steady-state hurricane. Tellus, 12A, 120, doi:10.1111/j.2153-3490.1960.tb01279.x.

    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., , G. M. Lackmann, , A. Aiyyer, , and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, doi:10.1175/JCLI-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 12241228, doi:10.1175/1520-0469(1999)056<1224:TROPVG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci., 38, 11521166, doi:10.1175/1520-0469(1981)038<1152:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , and R. M. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing vs. developing systems. J. Atmos. Sci., 38, 11321151, doi:10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Moore, , and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, doi:10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , and M. T. Montgomery, 2005: Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62, 542550, doi:10.1175/JAS-3370.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclone. Mon. Wea. Rev., 135, 862876, doi:10.1175/MWR3303.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 18891905, doi:10.1175/MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Saffir, H. S., 1973: Hurricane wind and storm surge. Military Eng., 423, 45.

  • Sawada, M., , and T. Iwasaki, 2010: Impacts of evaporation from raindrops on tropical cyclones. Part I: Evolution and axisymmetric structure. J. Atmos. Sci., 67, 7183, doi:10.1175/2009JAS3040.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169186, doi:10.1080/00431672.1974.9931702.

  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR. 88 pp., doi:10.5065/D6DZ069T.

  • Tuleya, R. E., , and Y. Kurihara, 1975: The energy and angular momentum budget of a three-dimensional tropical cyclone model. J. Atmos. Sci., 32, 287301, doi:10.1175/1520-0469(1975)032<0287:TEAAMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, doi:10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, doi:10.1175/2010MWR3335.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 10
PDF Downloads 37 37 8

Simulated Sensitivity of Tropical Cyclone Size and Structure to the Atmospheric Temperature Profile

View More View Less
  • 1 Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

This study uses the WRF ARW to investigate how different atmospheric temperature environments impact the size and structure development of a simulated tropical cyclone (TC). In each simulation, the entire vertical virtual temperature profile is either warmed or cooled in 1°C increments from an initial specified state while the initial relative humidity profile and sea surface temperature are held constant. This alters the initial amount of convective available potential energy (CAPE), specific humidity, and air–sea temperature difference such that, when the simulated atmosphere is cooled (warmed), the initial specific humidity and CAPE decrease (increase), but the surface energy fluxes from the ocean increase (decrease).

It is found that the TCs that form in an initially cooler environment develop larger wind and precipitation fields with more active outer-core rainband formation. Consistent with previous studies, outer-core rainband formation is associated with high surface energy fluxes, which leads to increases in the outer-core wind field. A larger convective field develops despite initializing in a low CAPE environment, and the dynamics are linked to a wider field of surface radial inflow. As the TC matures and radial inflow expands, large imports of relative angular momentum in the boundary layer continue to drive expansion of the TC’s overall size.

Current affiliation: Cooperative Institute of Research for Environmental Sciences, University of Colorado Boulder, Boulder, Colorado.

Current affiliation: School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, Australian Capital Territory, Australia.

Corresponding author address: Diana Stovern, Department of Atmospheric Sciences, The University of Arizona, Rm. 542, 1118 E. 4th St., Tucson, AZ 85721-0081. E-mail: dstovern@atmo.arizona.edu

Abstract

This study uses the WRF ARW to investigate how different atmospheric temperature environments impact the size and structure development of a simulated tropical cyclone (TC). In each simulation, the entire vertical virtual temperature profile is either warmed or cooled in 1°C increments from an initial specified state while the initial relative humidity profile and sea surface temperature are held constant. This alters the initial amount of convective available potential energy (CAPE), specific humidity, and air–sea temperature difference such that, when the simulated atmosphere is cooled (warmed), the initial specific humidity and CAPE decrease (increase), but the surface energy fluxes from the ocean increase (decrease).

It is found that the TCs that form in an initially cooler environment develop larger wind and precipitation fields with more active outer-core rainband formation. Consistent with previous studies, outer-core rainband formation is associated with high surface energy fluxes, which leads to increases in the outer-core wind field. A larger convective field develops despite initializing in a low CAPE environment, and the dynamics are linked to a wider field of surface radial inflow. As the TC matures and radial inflow expands, large imports of relative angular momentum in the boundary layer continue to drive expansion of the TC’s overall size.

Current affiliation: Cooperative Institute of Research for Environmental Sciences, University of Colorado Boulder, Boulder, Colorado.

Current affiliation: School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, Australian Capital Territory, Australia.

Corresponding author address: Diana Stovern, Department of Atmospheric Sciences, The University of Arizona, Rm. 542, 1118 E. 4th St., Tucson, AZ 85721-0081. E-mail: dstovern@atmo.arizona.edu
Save