• Arya, S. P., 1988: Introduction to Micrometeorology. Academic Press, 307 pp.

  • Basu, S., , A. A. M. Holtslag, , B. J. H. van de Wiel, , A. F. Moene, , and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899, doi:10.2478/s11600-007-0038-y.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and A. A. M. Holtslag, 1991: Flux parametrization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernardes, M., , and N. L. Dias, 2010: The alignment of the mean wind and stress vectors in the unstable surface layer. Bound.-Layer Meteor., 134, 4159, doi:10.1007/s10546-009-9429-8.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1988: A note on the Businger–Dyer profiles. Bound.-Layer Meteor., 42, 145151, doi:10.1007/BF00119880.

  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1994: Analytical solutions of the equations governing the temperature fluctuation method. Bound.-Layer Meteor., 68, 427432, doi:10.1007/BF00706800.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1999: A note on Businger’s derivation of nondimensional wind and temperature profiles under unstable conditions. J. Appl. Meteor., 38, 626628, doi:10.1175/1520-0450(1999)038<0626:ANOBSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999: Boundary-layer decoupling over cold surfaces as physical boundary-instability. Bound.-Layer Meteor., 90, 297325, doi:10.1023/A:1001710014316.

    • Search Google Scholar
    • Export Citation
  • Dwivedi, A. K., , S. Chandra, , M. Kumar, , S. Kumar, , and N. V. P. K. Kumar, 2015: Spectral analysis of wind and temperature components during lightning in pre-monsoon season over Ranchi. Meteor. Atmos. Phys., 127, 95105, doi:10.1007/s00703-014-0346-0.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1965: The flux-gradient relation for turbulent heat transfer in the lower atmosphere. Quart. J. Roy. Meteor. Soc., 91, 151157, doi:10.1002/qj.49709138805.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1967: The turbulent transport of heat and water vapor in an unstable atmosphere. Quart. J. Roy. Meteor. Soc., 93, 501508, doi:10.1002/qj.49709339809.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, doi:10.1007/BF00240838.

  • Ellison, A. B., 1957: Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech., 2, 456466, doi:10.1017/S0022112057000269.

    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., , and J. A. Businger, 1980: An Introduction to Atmospheric Physics. 2nd ed. Academic Press, 432 pp.

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 336 pp.

  • Gibbs, J. A., , E. Fedorovich, , and A. Shapiro, 2015: Revisiting surface heat-flux and temperature boundary conditions in models of stably stratified boundary-layer flows. Bound.-Layer Meteor., 154, 171184, doi:10.1007/s10546-014-9970-y.

    • Search Google Scholar
    • Export Citation
  • Giorgi, E., and et al. , 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246, doi:10.1007/BF00120937.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and F. T. M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201209, doi:10.1007/BF00117468.

    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., , J. Dudhia, , J. F. Gonzalez-Rouco, , J. Navarro, , J. P. Montavez, , and E. Gracia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kader, B. A., , and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637662, doi:10.1017/S0022112090002129.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., , A. G. Konings, , and A. Porporato, 2011: Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys. Rev. Lett., 107, 268502, doi:10.1103/PhysRevLett.107.268502.

    • Search Google Scholar
    • Export Citation
  • Kazansky, A. B., , and A. S. Monin, 1956: Turbulence in the inversion layer near the surface. Izv. Akad. Nauk SSSR, Ser. Geofiz., 1, 7986.

    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., , P. J. Hurley, , and K. N. Rayner, 2009: Modelling near-surface low winds over land under stable conditions: Sensitivity tests, flux-gradient relationships, and stability parameters. Bound.-Layer Meteor., 130, 249274, doi:10.1007/s10546-008-9341-7.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., , and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Interscience Publishers, 239 pp.

  • Malhi, Y. S., 1995: Significance of the dual solutions for heat fluxes measured by the temperature fluctuations method in stable conditions. Bound.-Layer Meteor., 74, 389396, doi:10.1007/BF00712379.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst., 151, 19631987.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and A. M. Yaglom, 1971: Statistical Fluid Mechanics. MIT Press, 769 pp.

  • Oleson, K. W., and et al. , 2008: Improvement to community land model and their impact on hydrological cycle. J. Geophys. Res., 133, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1961: An alternative derivation of the diabatic wind profile. Quart. J. Roy. Meteor. Soc., 87, 109110, doi:10.1002/qj.49708737113.

    • Search Google Scholar
    • Export Citation
  • Parlange, M. B., , W. E. Eichinger, , and J. D. Albertson, 1995: Regional scale evaporation and the atmospheric boundary layer. Rev. Geophys., 33, 99124, doi:10.1029/94RG03112.

    • Search Google Scholar
    • Export Citation
  • Pielke, R., 2013: Mesoscale Meteorological Modeling. 3rd ed. Academic Press, 760 pp.

  • Poulos, G. S., and et al. , 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., 1955: Free and forced convection in the atmosphere near the ground. Quart. J. Roy. Meteor. Soc., 81, 139143, doi:10.1002/qj.49708134802.

    • Search Google Scholar
    • Export Citation
  • Rao, K. G., , and R. Narasimha, 2006: Heat-flux scaling for weakly forced turbulent convection in atmosphere. J. Fluid Mech., 547, 115135, doi:10.1017/S0022112005007251.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1962: Simplified derivation of the diabatic wind profile. J. Atmos. Sci., 19, 180181, doi:10.1175/1520-0469(1962)019<0180:ASDOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., , and P. Srivastava, 2014: A semi-analytical approach for parametrization of the Obukhov stability parameter in the unstable atmospheric surface layer. Bound.-Layer Meteor., 153, 339353, doi:10.1007/s10546-014-9948-9.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Srivastava, P., , and M. Sharan, 2015: Characteristics of drag coefficient over a tropical environment in convective conditions. J. Atmos. Sci., 72, 49034913, doi:10.1175/JAS-D-14-0383.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., , A. A. M. Holtslag, , and H. A. R. De Bruin, 2005: Fluxes and gradients in the convective surface layer and the possible role of boundary-layer depth and entrainment flux. Bound.-Layer Meteor., 116, 237252, doi:10.1007/s10546-004-2730-7.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., 1971: A note on log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329, doi:10.1002/qj.49709741308.

    • Search Google Scholar
    • Export Citation
  • Taylor, R. J., 1956: Some measurements of heat flux at large negative Richardson number. Quart. J. Roy. Meteor. Soc., 82, 8991, doi:10.1002/qj.49708235110.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , A. F. Moene, , G.-J. Steeneveld, , O. K. Hartogensis, , and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274, doi:10.1007/s10494-007-9094-2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , S. Basu, , A. F. Moene, , H. J. J. Jonker, , G.-J. Steeneveld, , and A. A. M. Holtslag, 2011: Comments on “An extremum solution of the Monin–Obukhov similarity equations.” J. Atmos. Sci., 68, 14051408, doi:10.1175/2010JAS3680.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and R. L. Bras, 2010: An extremum solution of the Monin–Obukhov similarity equations. J. Atmos. Sci., 67, 485499, doi:10.1175/2009JAS3117.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and R. L. Bras, 2011: Reply to the “Comments on ‘An extremum solution of the Monin–Obukhov similarity equations.’” J. Atmos. Sci., 68, 14091412, doi:10.1175/2010JAS3735.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., 2001: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.-Layer Meteor., 99, 151158, doi:10.1023/A:1018718707419.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., 1959: Theory of turbulent transfer in non-neutral conditions. J. Appl. Meteor. Soc. Japan, 37, 6067.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 15
PDF Downloads 85 85 28

Characteristics of the Heat Flux in the Unstable Atmospheric Surface Layer

View More View Less
  • 1 Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
© Get Permissions
Restricted access

Abstract

The behavior of the heat flux H with respect to the stability parameter (=z/L, where z is the height above the ground, and L is the Obukhov length) in the unstable atmospheric surface layer is analyzed within the framework of Monin–Obukhov similarity (MOS) theory. Using MOS equations, H is expressed as a function of and vertical surface-layer potential temperature gradient . A mathematical analysis is carried out to analyze the theoretical nature of heat flux with the stability parameter by considering the vertical potential temperature gradient as (i) a constant and (ii) a power-law function of heat flux. For a given value of H, two values of associated with different stability regimes are found to occur in both the conditions, suggesting the nonuniqueness of MOS equations.

Turbulent data over three different sites—(i) Ranchi, India; (ii) the Met Office’s Cardington, United Kingdom, monitoring facility; and (iii) 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99; United States—are analyzed to compare the observed nature of H with that predicted by MOS. The analysis of observational data over these three sites reveals that the observed variation of H with is consistent with that obtained theoretically from MOS equations when considering the vertical temperature gradient as a power-law function of heat flux having the exponent larger than 2/3. The existence of two different values of the stability parameter for a given value of heat flux suggests that the application of heat flux as a boundary condition involves some intricacies, and it should be applied with caution in convective conditions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0291.s1.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. E-mail: mathilis@cas.iitd.ernet.in

Abstract

The behavior of the heat flux H with respect to the stability parameter (=z/L, where z is the height above the ground, and L is the Obukhov length) in the unstable atmospheric surface layer is analyzed within the framework of Monin–Obukhov similarity (MOS) theory. Using MOS equations, H is expressed as a function of and vertical surface-layer potential temperature gradient . A mathematical analysis is carried out to analyze the theoretical nature of heat flux with the stability parameter by considering the vertical potential temperature gradient as (i) a constant and (ii) a power-law function of heat flux. For a given value of H, two values of associated with different stability regimes are found to occur in both the conditions, suggesting the nonuniqueness of MOS equations.

Turbulent data over three different sites—(i) Ranchi, India; (ii) the Met Office’s Cardington, United Kingdom, monitoring facility; and (iii) 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99; United States—are analyzed to compare the observed nature of H with that predicted by MOS. The analysis of observational data over these three sites reveals that the observed variation of H with is consistent with that obtained theoretically from MOS equations when considering the vertical temperature gradient as a power-law function of heat flux having the exponent larger than 2/3. The existence of two different values of the stability parameter for a given value of heat flux suggests that the application of heat flux as a boundary condition involves some intricacies, and it should be applied with caution in convective conditions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0291.s1.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. E-mail: mathilis@cas.iitd.ernet.in

Supplementary Materials

    • Supplemental Materials (ZIP 1.36 MB)
Save