• Atkinson, G. D., , and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421427, doi:10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bessho, K., and et al. , 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, doi:10.2151/jmsj.2016-009.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, doi:10.1175/MWR3010.1.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, doi:10.1175/MWR-D-13-00021.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 20162033, doi:10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, doi:10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , Y. Wang, , M. Satoh, , T. Nasuno, , H. Miura, , and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 43054327, doi:10.1175/2010MWR3475.1.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, Y., and et al. , 2011: First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer. Proc. Int. Conf. for High Performance Computing, Networking, Storage and Analysis, New York, NY, Association for Computing Machinery, 111, doi:10.1145/2063384.2063386.

  • Haurwitz, B., 1935: The height of tropical cyclones and of the eye of the storm. Mon. Wea. Rev., 63, 4549, doi:10.1175/1520-0493(1935)63<45:THOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., , and E. S. Jordan, 1954: On the mean thermal structure of tropical cyclones. J. Meteor., 11, 440448, doi:10.1175/1520-0469(1954)011<0440:OTMTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. F., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681286, doi:10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanada, S., , A. Wada, , and M. Sugi, 2013: Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model. J. Climate, 26, 998610 005, doi:10.1175/JCLI-D-12-00477.1.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., and et al. , 2013: Revolutionizing climate modeling with Project Athena: A multi-institutional, international collaboration. Bull. Amer. Meteor. Soc., 94, 231245, doi:10.1175/BAMS-D-11-00043.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, doi:10.1175/WAF965.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., and et al. , 2015: A 20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc. Japan, 93, 393424, doi:10.2151/jmsj.2015-024.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2015: Hurricane wind–pressure relationship and eyewall replacement cycles. Wea. Forecasting, 30, 177181, doi:10.1175/WAF-D-14-00121.1.

    • Search Google Scholar
    • Export Citation
  • La Seur, N. E., , and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D. Zhang, , and M. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093, doi:10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D. Zhang, , and M. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2014: Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J. Climate, 27, 76227646, doi:10.1175/JCLI-D-13-00678.1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., , M. Satoh, , H. Tomita, , K. Oouchi, , Y. Yamada, , C. Kodama, , and J. Kinter, 2014: Gradient wind balance in tropical cyclones in high-resolution global experiments. Mon. Wea. Rev., 142, 19081926, doi:10.1175/MWR-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , H. Tomita, , S.-i. Iga, , and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , and H. Tomita, 2012: Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization. J. Climate, 25, 51195134, doi:10.1175/JCLI-D-11-00295.1.

    • Search Google Scholar
    • Export Citation
  • Ohno, T., , and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., , B. S. Barrett, , and C. M. Fine, 2014: Relationships between tropical cyclone intensity and eyewall structure as determined by radial profiles of inner-core infrared brightness temperature. Mon. Wea. Rev., 142, 45814599, doi:10.1175/MWR-D-13-00336.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and et al. , 2012: The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., 39, 21852206, doi:10.1007/s00382-011-1235-6.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and et al. , 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , Y. Yamada, , M. Sugi, , C. Kodama, , and A. T. Noda, 2015: Constraint on future change in global frequency of tropical cyclones due to global warming. J. Meteor. Soc. Japan, 93, 489500, doi:10.2151/jmsj.2015-025.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793, doi:10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , J. B. Halverson, , B. S. Ferrier, , W. A. Petersen, , R. H. Simpson, , R. Blakeslee, , and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535, doi:10.1007/BF01277500.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, doi:10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Takata, K., , S. Emori, , and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , D. Williamson, , and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Lawrence Livermore National Laboratory, University of California, PCMDI Rep. 60, 28 pp. [Available online at http://www-pcmdi.llnl.gov/publications/pdf/60.pdf.]

  • Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, doi:10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Uno, I., , X.-M. Cai, , D. Steyn, , and S. Emori, 1995: A simple extension of the Louis method for rough surface layer modelling. Bound.-Layer Meteor., 76, 395409, doi:10.1007/BF00709241.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., , M. Fiorino, , C. W. Landsea, , and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: Simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, doi:10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika, 34, 2835, doi:10.2307/2332510.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., , and M. Satoh, 2013: Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics. J. Climate, 26, 99319945, doi:10.1175/JCLI-D-13-00182.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., , K. Oouchi, , M. Satoh, , H. Tomita, , and W. Yanase, 2010: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett., 37, L07709, doi:10.1029/2010GL042518.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., , and F. Weng, 2013: Hurricane Sandy warm-core structure observed from Advanced Technology Microwave Sounder. Geophys. Res. Lett., 40, 33253330, doi:10.1002/grl.50626.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 7
PDF Downloads 28 28 3

Warm Cores, Eyewall Slopes, and Intensities of Tropical Cyclones Simulated by a 7-km-Mesh Global Nonhydrostatic Model

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
  • | 2 Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 3 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
© Get Permissions
Restricted access

Abstract

Based on the data of a 1-yr simulation by a global nonhydrostatic model with 7-km horizontal grid spacing, the relationships among warm-core structures, eyewall slopes, and the intensities of tropical cyclones (TCs) were investigated. The results showed that stronger TCs generally have warm-core maxima at higher levels as their intensities increase. It was also found that the height of a warm-core maximum ascends (descends) as the TC intensifies (decays). To clarify how the height and amplitude of warm-core maxima are related to TC intensity, the vortex structures of TCs were investigated. By gradually introducing simplifications of the thermal wind balance, it was established that warm-core structures can be reconstructed using only the tangential wind field within the inner-core region and the ambient temperature profile. A relationship between TC intensity and eyewall slope was investigated by introducing a parameter that characterizes the shape of eyewalls and can be evaluated from satellite measurements. The authors found that the eyewall slope becomes steeper (shallower) as the TC intensity increases (decreases). Based on a balanced model, the authors proposed a relationship between TC intensity and eyewall slope. The result of the proposed model is consistent with that of the analysis using the simulation data. Furthermore, for sufficiently strong TCs, the authors found that the height of the warm-core maximum increases as the slope becomes steeper, which is consistent with previous observational studies. These results suggest that eyewall slopes can be used to diagnose the intensities and structures of TCs.

Denotes Open Access content.

Corresponding author address: Tomoki Ohno, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. E-mail: t-ohno@aori.u-tokyo.ac.jp

Abstract

Based on the data of a 1-yr simulation by a global nonhydrostatic model with 7-km horizontal grid spacing, the relationships among warm-core structures, eyewall slopes, and the intensities of tropical cyclones (TCs) were investigated. The results showed that stronger TCs generally have warm-core maxima at higher levels as their intensities increase. It was also found that the height of a warm-core maximum ascends (descends) as the TC intensifies (decays). To clarify how the height and amplitude of warm-core maxima are related to TC intensity, the vortex structures of TCs were investigated. By gradually introducing simplifications of the thermal wind balance, it was established that warm-core structures can be reconstructed using only the tangential wind field within the inner-core region and the ambient temperature profile. A relationship between TC intensity and eyewall slope was investigated by introducing a parameter that characterizes the shape of eyewalls and can be evaluated from satellite measurements. The authors found that the eyewall slope becomes steeper (shallower) as the TC intensity increases (decreases). Based on a balanced model, the authors proposed a relationship between TC intensity and eyewall slope. The result of the proposed model is consistent with that of the analysis using the simulation data. Furthermore, for sufficiently strong TCs, the authors found that the height of the warm-core maximum increases as the slope becomes steeper, which is consistent with previous observational studies. These results suggest that eyewall slopes can be used to diagnose the intensities and structures of TCs.

Denotes Open Access content.

Corresponding author address: Tomoki Ohno, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. E-mail: t-ohno@aori.u-tokyo.ac.jp
Save