• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , J. L. Dufresne, , H. Le Treut, , J. J. Morcrette, , and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossery, , and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Cecchini, M. A., and et al. , 2016: Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in the wet season. Atmos. Chem. Phys., 16, 70297041, doi:10.5194/acp-16-7029-2016.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., , and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107, AAC 7-1AAC 7-2, doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., , and Z. Li, 2003: Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application. J. Geophys. Res., 108, 4763, doi:10.1029/2003JD003906.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., , M. W. Christensen, , G. L. Stephens, , and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, doi:10.1038/ngeo2214.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , T. P. Ackerman, , G. G. Mace, , K. P. Moran, , R. T. Marchand, , M. A. Miller, , and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Costantino, L., , and F. M. Bréon, 2013: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13, 6988, doi:10.5194/acp-13-69-2013.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , and G. G. Mace, 2003: Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Oceanic Technol., 20, 4253, doi:10.1175/1520-0426(2003)020<0042:POLLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , T. P. Ackerman, , E. E. Clothiaux, , P. Pilewskie, , and Y. Han, 1997: Microphysical and radiative properties of stratiform clouds deduced from ground-based measurements. J. Geophys. Res., 102, 23 82923 843, doi:10.1029/97JD02119.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , T. P. Ackerman, , and E. E. Clothiaux, 1998: Parameterizations of microphysical and shortwave radiative properties of boundary layer stratus from ground-based measurements. J. Geophys. Res., 103, 31 68131 693, doi:10.1029/1998JD200047.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , P. Minnis, , T. P. Ackerman, , E. E. Clothiaux, , G. G. Mace, , C. N. Long, , and J. C. Liljegren, 2000: A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 105, 45294538, doi:10.1029/1999JD901159.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , P. Minnis, , B. Xi, , S. Sun-Mack, , and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, doi:10.1029/2007JD008438.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , B. Xi, , A. Kennedy, , P. Minnis, , and R. Wood, 2014a: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM Mobile Facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 36653682, doi:10.1175/JCLI-D-13-00553.1.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , B. Xi, , and P. Wu, 2014b: Investigation of the diurnal variation of marine boundary layer cloud microphysical properties at the Azores. J. Climate, 27, 88278835, doi:10.1175/JCLI-D-14-00434.1.

    • Search Google Scholar
    • Export Citation
  • Dong, X., , A. C. Schwants, , B. Xi, , and P. Wu, 2015: Investigation of the marine boundary layer cloud properties under coupled and decoupled conditions over the Azores. J. Geophys. Res. Atmos., 120, 61796191, doi:10.1002/2014JD022939.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 1994: The description of the ECMWF/WCRP Level III—A global atmospheric data archive. ECMWF Tech. Rep., 48 pp. [Available online at http://cedadocs.badc.rl.ac.uk/1109/.]

  • Feingold, G., , L. A. Remer, , J. Ramaprasad, , and Y. J. Kaufman, 2001: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey’s approach. J. Geophys. Res., 106, 22 90722 922, doi:10.1029/2001JD000732.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. L. Eberhard, , D. E. Veron, , and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. Furrer, , P. Pilewskie, , L. A. Remer, , Q. Min, , and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., , and G. Feingold, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464, doi:10.1175/2008JAS2909.1.

    • Search Google Scholar
    • Export Citation
  • Huang, L., , J. H. Jiang, , J. L. Tackett, , H. Su, , and R. Fu, 2013: Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations. J. Geophys. Res. Atmos., 118, 45724596, doi:10.1002/jgrd.50407.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., , and S. Noble, 2014: CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds. J. Atmos. Sci., 71, 312331, doi:10.1175/JAS-D-13-086.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Jefferson, A., 2011: Aerosol Observing System (AOS) handbook. U.S. DOE Office of Science Tech. Rep. ARM-TR-014, 32 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/aos_handbook.pdf.]

  • Jeong, M. J., , and Z. Li, 2010: Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J. Geophys. Res., 115, D00K32, doi:10.1029/2009JD013547.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., , S. A. Christopher, , and J. Quaas, 2009: A six year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos. Chem. Phys., 9, 40914114, doi:10.5194/acp-9-4091-2009.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , I. K. Lorraine, , A. Remer, , D. Rosenfeld, , and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11 20711 212, doi:10.1073/pnas.0505191102.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-G., , M. A. Miller, , S. E. Schwartz, , Y. Liu, , and Q. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, doi:10.1029/2007JD008961.

    • Search Google Scholar
    • Export Citation
  • Koike, M., and et al. , 2012: Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current. J. Geophys. Res., 117, D17205, doi:10.1029/2011JD017324.

    • Search Google Scholar
    • Export Citation
  • Koren, I., , G. Feingold, , and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, doi:10.5194/acp-10-8855-2010.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., , G. L. Stephens, , and C. Kummerow, 2008: Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res., 113, D15205, doi:10.1029/2008JD009876.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., , J. E. Penner, , and S. M. Saleeby, 2009: Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res., 114, D07204, doi:10.1029/2008JD010513.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and et al. , 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys., 27, 27552770, doi:10.5194/angeo-27-2755-2009.

    • Search Google Scholar
    • Export Citation
  • Li, Z., , F. Niu, , J. Fan, , Y. Liu, , D. Rosenfeld, , and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi:10.1038/ngeo1313.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., , E. E. Clothiaux, , G. G. Mace, , S. Kato, , and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, doi:10.1029/2000JD900817.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , and Z. Li, 2014: Estimation of cloud condensation nuclei concentration from aerosol optical quantities: Influential factors and uncertainties. Atmos. Chem. Phys., 14, 471483, doi:10.5194/acp-14-471-2014.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , Y. Zheng, , Z. Li, , and M. Cribb, 2011: Analysis of cloud condensation nuclei properties at a polluted site in southeastern China during the AMF-China Campaign. J. Geophys. Res., 116, D00K35, doi:10.1029/2011JD016395.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , Y. Zheng, , Z. Li, , C. Flynn, , and M. Cribb, 2012: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 117, D00K38, doi:10.1029/2011JD016490.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , Z. Li, , Y. Zheng, , J. C. Chiu, , F. Zhao, , M. Cadeddu, , F. Weng, , and M. Cribb, 2013: Cloud optical and microphysical properties derived from ground-based and satellite sensors over a site in the Yangtze Delta region. J. Geophys. Res. Atmos., 118, 91419152, doi:10.1002/jgrd.50648.

    • Search Google Scholar
    • Export Citation
  • Logan, T., , B. Xi, , and X. Dong, 2014: Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM Mobile Facility over the Azores. J. Geophys. Res. Atmos., 119, 48594872, doi:10.1002/2013JD021288.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., , and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., , H. Masunaga, , R. A. S. Pielke, , and W. K. Tao, 2004: Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophys. Res. Lett., 31, L06109, doi:10.1029/2003GL019287.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., , G. Feingold, , A. S. Frisch, , D. D. Turner, , M. A. Miller, , J. C. Chiu, , Q. Min, , and J. A. Ogren, 2009: An assessment of aerosol–cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, doi:10.1007/s00382-009-0694-5.

    • Search Google Scholar
    • Export Citation
  • Menon, S., , A. D. Del Genio, , Y. Kaufman, , R. Bennartz, , D. Koch, , N. Loeb, , and D. Orlikowski, 2008: Analyzing signatures of aerosol–cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J. Geophys. Res., 113, D14S22, doi:10.1029/2007JD009442.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., , J. Verlinde, , and E. E. Clothiaux, 2000: Cloud-droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , A. Higurashi, , K. Kawamoto, , and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174, doi:10.1029/2000GL012186.

    • Search Google Scholar
    • Export Citation
  • Niu, F., , and Z. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12, 84918498, doi:10.5194/acp-12-8491-2012.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., , and P. Zuidema, 2013: The first aerosol indirect effect quantified through airborne remote sensing during VOCALS-Rex. Atmos. Chem. Phys., 13, 917931, doi:10.5194/acp-13-917-2013.

    • Search Google Scholar
    • Export Citation
  • Pandithurai, G., , T. Takamura, , J. Yamaguchi, , K. Miyagi, , T. Takano, , Y. Ishizaka, , S. Dipu, , and A. Shimizu, 2009: Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys. Res. Lett., 36, L13805, doi:10.1029/2009GL038451.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., and et al. , 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and G. Feingold, 2003: Explanation of the discrepancies among satellite observations of the aerosol indirect effects. Geophys. Res. Lett., 30, 1776, doi:10.1029/2003GL017684.

    • Search Google Scholar
    • Export Citation
  • Schmidt, J., , A. Ansmann, , J. Buhl, , and U. Wandinger, 2015: A strong aerosol–cloud interaction in altocumulus during updraft periods: Lidar observations over central Europe. Atmos. Chem. Phys., 15, 10 68710 700, doi:10.5194/acp-15-10687-2015.

    • Search Google Scholar
    • Export Citation
  • Su, W., , N. G. Loeb, , K. M. Xu, , G. L. Schuster, , and Z. A. Eitzen, 2010: An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis. J. Geophys. Res., 115, D18219, doi:10.1029/2010JD013948.

    • Search Google Scholar
    • Export Citation
  • Teller, A., , and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 6780, doi:10.5194/acp-6-67-2006.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , M. D. Petters, , J. R. Snider, , B. Stevens, , W. Tahnk, , M. Wetzel, , L. Russell, , and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, doi:10.1029/2004JD005116.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and et al. , 2013: Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean. Atmos. Chem. Phys., 13, 25412562, doi:10.5194/acp-13-2541-2013.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., , and A. Marshak, 2014: Near-cloud aerosol properties from the 1 km resolution MODIS ocean product. J. Geophys. Res. Atmos., 119, 15461554, doi:10.1002/2013JD020633.

    • Search Google Scholar
    • Export Citation
  • Wang, F., , J. Guo, , Y. Wu, , X. Zheng, , M. Deng, , X. Li, , J. Zhang, , and J. Zhao, 2014: Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos. Environ., 84, 122132, doi:10.1016/j.atmosenv.2013.11.018.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , J. Fan, , R. Zhang, , L. R. Leung, , and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 53615379, doi:10.1002/jgrd.50432.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • West, R. E. L., , P. Stier, , A. Jones, , C. E. Johnson, , G. W. Mann, , N. Bellouin, , D. G. Partridge, , and Z. Kipling, 2014: The importance of vertical velocity variability for estimates of the indirect aerosol effects. Atmos. Chem. Phys., 14, 63696393, doi:10.5194/acp-14-6369-2014.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2009: Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL). U.S. DOE Office of Science Tech. Rep. DOE/SC-ARM-0902, 29 pp. [Available online at http://www.arm.gov/publications/programdocs/doe-sc-arm-0902.pdf?id=71.]

  • Wood, R., , and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and et al. , 2015: Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, doi:10.1175/BAMS-D-13-00180.1.

    • Search Google Scholar
    • Export Citation
  • Xi, B., , X. Dong, , P. Minnis, , and S. Sun-Mack, 2014: Comparison of marine boundary layer cloud properties from CERES-MODIS edition 4 and DOE ARM AMF measurements at the Azores. J. Geophys. Res. Atmos., 119, 95099529, doi:10.1002/2014JD021813.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , J. Quan, , X. Tie, , M. Huang, , and X. Ma, 2011: Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmos. Environ., 45, 665672, doi:10.1016/j.atmosenv.2010.10.025.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , S. A. Klein, , S. Xie, , X. Liu, , J. S. Boyle, , and Y. Zhang, 2012: Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, doi:10.1029/2012GL051213.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , B. Albrecht, , P. Minnis, , K. Ayers, , and H. H. Jonson, 2010: Observed aerosol and liquid water path relationships in marine stratocumulus. Geophys. Res. Lett., 37, L17803, doi:10.1029/2010GL044095.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 13
PDF Downloads 31 31 8

Response of Marine Boundary Layer Cloud Properties to Aerosol Perturbations Associated with Meteorological Conditions from the 19-Month AMF-Azores Campaign

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland, and State Laboratory of Earth Surface Process and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • | 3 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

This study investigates the response of marine boundary layer (MBL) cloud properties to aerosol loading by accounting for the contributions of large-scale dynamic and thermodynamic conditions and quantifies the first indirect effect (FIE). It makes use of 19-month measurements of aerosols, clouds, and meteorology acquired during the Atmospheric Radiation Measurement Mobile Facility field campaign over the Azores. Cloud droplet number concentrations and cloud optical depth (COD) significantly increased with increasing aerosol number concentration . Cloud droplet effective radius (DER) significantly decreased with increasing . The correlations between cloud microphysical properties [, liquid water path (LWP), and DER] and were stronger under more stable conditions. The correlations between , LWP, DER, and were stronger under ascending-motion conditions, while the correlation between COD and was stronger under descending-motion conditions. The magnitude and corresponding uncertainty of the FIE ranged from 0.060 ± 0.022 to 0.101 ± 0.006 depending on the different LWP values. Under more stable conditions, cloud-base heights were generally lower than those under less stable conditions. This enabled a more effective interaction with aerosols, resulting in a larger value for the FIE. However, the dependence of the response of cloud properties to aerosol perturbations on stability varied according to whether ground- or satellite-based DER retrievals were used. The magnitude of the FIE had a larger variation with changing LWP under ascending-motion conditions and tended to be higher under ascending-motion conditions for clouds with low LWP and under descending-motion conditions for clouds with high LWP. A contrasting dependence of FIE on atmospheric stability estimated from the surface and satellite cloud properties retrievals reported in this study underscores the importance of assessing all-level properties of clouds in aerosol–cloud interaction studies.

Corresponding author address: Zhanqing Li, ESPRE, GCESS, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China. E-mail: zhanqingli@msn.com

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

This study investigates the response of marine boundary layer (MBL) cloud properties to aerosol loading by accounting for the contributions of large-scale dynamic and thermodynamic conditions and quantifies the first indirect effect (FIE). It makes use of 19-month measurements of aerosols, clouds, and meteorology acquired during the Atmospheric Radiation Measurement Mobile Facility field campaign over the Azores. Cloud droplet number concentrations and cloud optical depth (COD) significantly increased with increasing aerosol number concentration . Cloud droplet effective radius (DER) significantly decreased with increasing . The correlations between cloud microphysical properties [, liquid water path (LWP), and DER] and were stronger under more stable conditions. The correlations between , LWP, DER, and were stronger under ascending-motion conditions, while the correlation between COD and was stronger under descending-motion conditions. The magnitude and corresponding uncertainty of the FIE ranged from 0.060 ± 0.022 to 0.101 ± 0.006 depending on the different LWP values. Under more stable conditions, cloud-base heights were generally lower than those under less stable conditions. This enabled a more effective interaction with aerosols, resulting in a larger value for the FIE. However, the dependence of the response of cloud properties to aerosol perturbations on stability varied according to whether ground- or satellite-based DER retrievals were used. The magnitude of the FIE had a larger variation with changing LWP under ascending-motion conditions and tended to be higher under ascending-motion conditions for clouds with low LWP and under descending-motion conditions for clouds with high LWP. A contrasting dependence of FIE on atmospheric stability estimated from the surface and satellite cloud properties retrievals reported in this study underscores the importance of assessing all-level properties of clouds in aerosol–cloud interaction studies.

Corresponding author address: Zhanqing Li, ESPRE, GCESS, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China. E-mail: zhanqingli@msn.com

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Save