• Bu, Y. P., , R. G. Fovell, , and K. L. Corbosiero, 2014: Influence of cloud–radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, doi:10.1175/JAS-D-13-0265.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146172, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., , C. D. Thorncroft, , and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, doi:10.1175/MWR-D-13-00191.1.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, doi:10.1175/MWR-D-13-00021.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, doi:10.1146/annurev.earth.31.100901.141259.

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105. 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., , L. F. Radke, , and P. V. Hobbs, 2002: Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. J. Atmos. Sci., 59, 769778, doi:10.1175/1520-0469(2002)059<0769:AEOCEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., and et al. , 2012: Hurricane Weather Research and Forecasting (HWRF) model: 2012 scientific documentation. NCAR Development Tested Bed Center Rep., 96 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFScientificDocumentation_v3.4a.pdf.]

  • Gopalakrishnan, S., , F. Marks, , J. A. Zhang, , X. Zhang, , J.-W. Bao, , and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogsett, W., , and D.-L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 26782696, doi:10.1175/2009JAS3087.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., , and D.-L. Zhang, 2009: An analytical model for the rapid intensification for tropical cyclones. Quart. J. Roy. Meteor. Soc., 135, 13361349, doi:10.1002/qj.433.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., , and V. Tallapragada, 2014: On the development of double warm cores in intense tropical cyclones in the HWRF model. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 17D.4. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper243675.html.]

  • Kieu, C. Q., , V. Tallapragada, , and W. Hogsett, 2014: Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model. Geophys. Res. Lett., 41, 32983306, doi:10.1002/2014GL059584.

    • Search Google Scholar
    • Export Citation
  • Knaff, J., , S. Longmore, , and D. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., 1967: On the structure of hurricanes in the upper troposphere and lower stratosphere. Mon. Wea. Rev., 95, 541564, doi:10.1175/1520-0493(1967)095<0541:OTSOHI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaSeur, N. E., , and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D.-L. Zhang, , and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093, doi:10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D.-L. Zhang, , and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., , S. T. Garner, , and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619, doi:10.1175/2011JAS3639.1.

    • Search Google Scholar
    • Export Citation
  • Ohno, T., , and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , C. M. Rozoff, , J. L. Vigh, , B. D. McNoldy, , and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, doi:10.1002/qj.49.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., , J. W. Barrett, , P. W. Fieguth, , P. W. Rosenkranz, , M. S. Spina, , and D. H. Staelin, 1996: Observations of thermal and precipitation structure in a tropical cyclone by means of passive microwave imagery near 118 GHz. J. Appl. Meteor., 35, 671678, doi:10.1175/1520-0450(1996)035<0671:OOTAPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 12271232, doi:10.1175/1520-0469(1980)037<1227:TCED>2.0.CO;2.

  • Stern, D. P., , and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., , and C. Q. Kieu, 2014: Real-time forecasts of typhoon rapid intensification in the North Western Pacific basin with the NCEP operational HWRF model. Trop. Cyclone Res. Rev., 3, 6377.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., , C. Q. Kieu, , Y. Kwon, , S. Trahan, , Q. Liu, , Z. Zhang, , and I.-H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tang, X., , and F. Zhang, 2016: Impacts of the diurnal radiation cycle on the formation, intensity, and structure of Hurricane Edouard (2014). J. Atmos. Sci., 73, 28712892, doi:10.1175/JAS-D-15-0283.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., , and Y. Kurihara, 1975: The energy and angular momentum budgets of a three-dimensional tropical cyclone model. J. Atmos. Sci., 32, 287301, doi:10.1175/1520-0469(1975)032<0287:TEAAMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: Formulation and quasi-balanced flow. J. Atmos. Sci., 60, 15931607, doi:10.1175/2999.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, doi:10.1029/JC084iC06p03173.

  • Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367414, doi:10.1029/RG002i002p00367.

  • Zhang, D.-L., , and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788, doi:10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 16
PDF Downloads 59 59 19

On the Development of Double Warm-Core Structures in Intense Tropical Cyclones

View More View Less
  • 1 Atmospheric Program, Department of Geological Sciences, Indiana University, Bloomington, Indiana
  • | 2 Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 3 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 4 Atmospheric Program, Department of Geological Sciences, Indiana University, Bloomington, Indiana
© Get Permissions
Restricted access

Abstract

This study examines the formation of a double warm-core (DWC) structure in intense tropical cyclones (TCs) that was captured in almost all supertyphoon cases during the 2012–14 real-time typhoon forecasts in the northwestern Pacific basin with the Hurricane Weather Research and Forecasting Model (HWRF). By using an idealized configuration of HWRF to focus on the intrinsic mechanism of the DWC formation, it is shown that the development of DWC in intense TCs is accompanied by a thin inflow layer above the typical upper outflow layer. The development of this thin inflow layer in the lower stratosphere (~100–75 hPa), which is associated with an inward pressure gradient force induced by cooling at the cloud top, signifies intricate interaction of TCs with the lower stratosphere as TCs become sufficiently intense, which has not been examined previously. Specifically, it is demonstrated that a higher-level inflow can advect potentially warm air from the lower stratosphere toward the inner-core region, thus forming an upper-level warm core that is separated from a midlevel one of tropospheric air. Such formation of the upper-level warm anomaly in intense TCs is linked to an episode of intensification at the later stage of TC development. While these results are produced by HWRF, the persistent DWC and UIL features in all HWRF simulations of intense TCs suggest that the lower stratosphere may have significant impacts on the inner-core structures of intense TCs beyond the current framework of TCs with a single warm core.

Corresponding author address: Dr. Chanh Kieu, Department of Geological Sciences, Indiana University, 1001 10th Street, GY517 Atmospheric Science, Bloomington, IN 47405. E-mail: ckieu@indiana.edu

Abstract

This study examines the formation of a double warm-core (DWC) structure in intense tropical cyclones (TCs) that was captured in almost all supertyphoon cases during the 2012–14 real-time typhoon forecasts in the northwestern Pacific basin with the Hurricane Weather Research and Forecasting Model (HWRF). By using an idealized configuration of HWRF to focus on the intrinsic mechanism of the DWC formation, it is shown that the development of DWC in intense TCs is accompanied by a thin inflow layer above the typical upper outflow layer. The development of this thin inflow layer in the lower stratosphere (~100–75 hPa), which is associated with an inward pressure gradient force induced by cooling at the cloud top, signifies intricate interaction of TCs with the lower stratosphere as TCs become sufficiently intense, which has not been examined previously. Specifically, it is demonstrated that a higher-level inflow can advect potentially warm air from the lower stratosphere toward the inner-core region, thus forming an upper-level warm core that is separated from a midlevel one of tropospheric air. Such formation of the upper-level warm anomaly in intense TCs is linked to an episode of intensification at the later stage of TC development. While these results are produced by HWRF, the persistent DWC and UIL features in all HWRF simulations of intense TCs suggest that the lower stratosphere may have significant impacts on the inner-core structures of intense TCs beyond the current framework of TCs with a single warm core.

Corresponding author address: Dr. Chanh Kieu, Department of Geological Sciences, Indiana University, 1001 10th Street, GY517 Atmospheric Science, Bloomington, IN 47405. E-mail: ckieu@indiana.edu
Save