• Back, L. E., , and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-A., , J.-Y. Yu, , and C. Chou, 2016: Impacts of vertical structure of convection in global warming: The role of shallow convection. J. Climate, 29, 46654684, doi:10.1175/JCLI-D-15-0563.1.

    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition analysis and canonical correlation analysis. J. Climate, 9, 20032009, doi:10.1175/1520-0442(1996)009<2003:SVDAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1997: Some comments on singular value decomposition analysis. J. Climate, 10, 17591761, doi:10.1175/1520-0442(1997)010<1759:SCOSVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , L.-F. Huang, , L. Tseng, , J.-Y. Tu, , and P.-H. Tan, 2009a: Annual cycle of rainfall in the western North Pacific and East Asian sector. J. Climate, 22, 20732094, doi:10.1175/2008JCLI2538.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J. D. Neelin, , C.-A. Chen, , and J.-Y. Tu, 2009b: Evaluating the rich-get-richer mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , T.-C. Wu, , and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 24812496, doi:10.1007/s00382-013-1703-2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, doi:10.1002/2013MS000272.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., , J. Fei, , X. Huang, , and X. Cheng, 2015: A potential problem with the application of moist static energy in tropical cyclone studies. J. Atmos. Sci., 72, 30093019, doi:10.1175/JAS-D-14-0367.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , A. H. Sobel, , and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2 (5), doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , J. D. Neelin, , and B. Stevens, 2007: Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J. Climate, 20, 26232642, doi:10.1175/JCLI4079.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , and P. D. Sardeshmukh, 1995: A caveat concerning singular value decomposition. J. Climate, 8, 352360, doi:10.1175/1520-0442(1995)008<0352:ACCSVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., , and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , Z. Kuang, , and C. C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 52295241, doi:10.1175/2008JCLI2073.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

  • Takayabu, Y. N., , S. Shige, , W.-K. Tao, , and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., , B. Stevens, , and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806, doi:10.1175/2008JAS2945.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and R. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62, doi:10.1007/978-1-935704-13-3_4.

  • Yano, J.-I., , and R. Plant, 2012: Interactions between shallow and deep convection under a finite departure from convective quasi equilibrium. J. Atmos. Sci., 69, 34633470, doi:10.1175/JAS-D-12-0108.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51, 18951914, doi:10.1175/1520-0469(1994)051<1895:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and J. D. Neelin, 1997: Analytic approximations for moist convectively adjusted regions. J. Atmos. Sci., 54, 10541063, doi:10.1175/1520-0469(1997)054<1054:AAFMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , C. Chou, , and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, doi:10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 29
PDF Downloads 97 97 27

Impacts of Vertical Structure of Large-Scale Vertical Motion in Tropical Climate: Moist Static Energy Framework

View More View Less
  • 1 Earth System Science Program, Taiwan International Graduate Program, Research Center for Environmental Changes, Academia Sinica, Taipei, and Department of Atmospheric Sciences, National Central University, Taoyuan City, Taiwan
  • | 2 Department of Atmospheric Sciences, National Central University, Taoyuan City, Taiwan
  • | 3 Research Center for Environmental Changes, Academia Sinica, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

Interactions between cumulus convection and its large-scale environment have been recognized as crucial to the understanding of tropical climate and its variability. In this study, the moist static energy (MSE) budget is employed to investigate the potential impact of the vertical structure of large-scale vertical motion in tropical climate based on results from both reanalysis data and model simulation. Two domains are selected over the western and eastern Pacific with vertical motion profiles that are dominated by top-heavy and bottom-heavy structures, respectively. The bottom-heavy structure is climatologically associated with more shallow convection, while the top-heavy structure is related to more deep convection. The column-integrated vertical MSE advection of top-heavy vertical motion is positive, while that of bottom-heavy vertical motion tends to be negative. Controlling factors responsible for the above vertical MSE advection contrast are discussed based on a simple decomposition of the MSE budget equation. It was found that the sign of vertical MSE advection is determined mainly by the vertical moisture transport, the magnitude of which is very sensitive to the structure of vertical motion. A top-heavy (bottom heavy) structure of vertical motion favors an export (import) of MSE and a positive (negative) value of the vertical MSE advection.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0031.s1.

Corresponding author address: Dr. Jia-Yuh Yu, Department of Atmospheric Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan. E-mail: jiayuh@atm.ncu.edu.tw

Abstract

Interactions between cumulus convection and its large-scale environment have been recognized as crucial to the understanding of tropical climate and its variability. In this study, the moist static energy (MSE) budget is employed to investigate the potential impact of the vertical structure of large-scale vertical motion in tropical climate based on results from both reanalysis data and model simulation. Two domains are selected over the western and eastern Pacific with vertical motion profiles that are dominated by top-heavy and bottom-heavy structures, respectively. The bottom-heavy structure is climatologically associated with more shallow convection, while the top-heavy structure is related to more deep convection. The column-integrated vertical MSE advection of top-heavy vertical motion is positive, while that of bottom-heavy vertical motion tends to be negative. Controlling factors responsible for the above vertical MSE advection contrast are discussed based on a simple decomposition of the MSE budget equation. It was found that the sign of vertical MSE advection is determined mainly by the vertical moisture transport, the magnitude of which is very sensitive to the structure of vertical motion. A top-heavy (bottom heavy) structure of vertical motion favors an export (import) of MSE and a positive (negative) value of the vertical MSE advection.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0031.s1.

Corresponding author address: Dr. Jia-Yuh Yu, Department of Atmospheric Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan. E-mail: jiayuh@atm.ncu.edu.tw

Supplementary Materials

    • Supplemental Materials (PDF 1.03 MB)
Save