An Investigation of the Presence of Atmospheric Rivers over the North Pacific during Planetary-Scale Wave Life Cycles and Their Role in Arctic Warming

Cory Baggett Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Cory Baggett in
Current site
Google Scholar
PubMed
Close
,
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
, and
Steven Feldstein Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heretofore, the tropically excited Arctic warming (TEAM) mechanism put forward that localized tropical convection amplifies planetary-scale waves, which transport sensible and latent heat into the Arctic, leading to an enhancement of downward infrared radiation and Arctic surface warming. In this study, an investigation is made into the previously unexplored contribution of the synoptic-scale waves and their attendant atmospheric rivers to the TEAM mechanism. Reanalysis data are used to conduct a suite of observational analyses, trajectory calculations, and idealized model simulations. It is shown that localized tropical convection over the Maritime Continent precedes the peak of the planetary-scale wave life cycle by ~10–14 days. The Rossby wave source induced by the tropical convection excites a Rossby wave train over the North Pacific that amplifies the climatological December–March stationary waves. These amplified planetary-scale waves are baroclinic and transport sensible and latent heat poleward. During the planetary-scale wave life cycle, synoptic-scale waves are diverted northward over the central North Pacific. The warm conveyor belts associated with the synoptic-scale waves channel moisture from the subtropics into atmospheric rivers that ascend as they move poleward and penetrate into the Arctic near the Bering Strait. At this time, the synoptic-scale waves undergo cyclonic Rossby wave breaking, which further amplifies the planetary-scale waves. The planetary-scale wave life cycle ceases as ridging over Alaska retrogrades westward. The ridging blocks additional moisture transport into the Arctic. However, sensible and latent heat amounts remain elevated over the Arctic, which enhances downward infrared radiation and maintains warm surface temperatures.

Corresponding author address: Cory Baggett, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: cfb128@psu.edu

Abstract

Heretofore, the tropically excited Arctic warming (TEAM) mechanism put forward that localized tropical convection amplifies planetary-scale waves, which transport sensible and latent heat into the Arctic, leading to an enhancement of downward infrared radiation and Arctic surface warming. In this study, an investigation is made into the previously unexplored contribution of the synoptic-scale waves and their attendant atmospheric rivers to the TEAM mechanism. Reanalysis data are used to conduct a suite of observational analyses, trajectory calculations, and idealized model simulations. It is shown that localized tropical convection over the Maritime Continent precedes the peak of the planetary-scale wave life cycle by ~10–14 days. The Rossby wave source induced by the tropical convection excites a Rossby wave train over the North Pacific that amplifies the climatological December–March stationary waves. These amplified planetary-scale waves are baroclinic and transport sensible and latent heat poleward. During the planetary-scale wave life cycle, synoptic-scale waves are diverted northward over the central North Pacific. The warm conveyor belts associated with the synoptic-scale waves channel moisture from the subtropics into atmospheric rivers that ascend as they move poleward and penetrate into the Arctic near the Bering Strait. At this time, the synoptic-scale waves undergo cyclonic Rossby wave breaking, which further amplifies the planetary-scale waves. The planetary-scale wave life cycle ceases as ridging over Alaska retrogrades westward. The ridging blocks additional moisture transport into the Arctic. However, sensible and latent heat amounts remain elevated over the Arctic, which enhances downward infrared radiation and maintains warm surface temperatures.

Corresponding author address: Cory Baggett, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: cfb128@psu.edu
Save
  • Abbot, D. S., and E. Tziperman, 2008: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, doi:10.1029/2007GL032286.

    • Search Google Scholar
    • Export Citation
  • Aref, H., 1984: Stirring by chaotic advection. J. Fluid Mech., 143, 121, doi:10.1017/S0022112084001233.

  • Baggett, C., and S. Lee, 2015: Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci., 72, 15621568, doi:10.1175/JAS-D-14-0334.1.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Barron, E. J., W. H. Peterson, D. Pollard, and S. L. Thompson, 1993: Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 8, 785798, doi:10.1029/93PA02227.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., and Y. A. Izrael, 1991: Anthropogenic Climate Change. University of Arizona Press, 485 pp.

  • Cai, M., 2006: Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative–transportive climate model. Climate Dyn., 26, 661675, doi:10.1007/s00382-005-0104-6.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, doi:10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Vries, A. J., S. B. Feldstein, M. Riemer, E. Tyrlis, M. Sprenger, M. Baumgart, M. Fnais, and J. Lelieveld, 2016: Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quart. J. Roy. Meteor. Soc., 142, 18621880, doi:10.1002/qj.2781.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. G., G. Lesins, C. P. Thackray, C. Perro, G. J. Nott, T. J. Duck, R. Damoah, and J. R. Drummond, 2011: Water vapor intrusions into the High Arctic during winter. Geophys. Res. Lett., 38, L12806, doi:10.1029/2011GL047493.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, 2015: HYSPLIT—Hybrid Single Particle Lagrangian Integrated Trajectory Model. NOAA/Air Resources Laboratory, 31 August 2015. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php.]

  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: The ERA-Interim project. European Centre for Medium-Range Weather Forecasts public datasets, accessed 25 October 2013. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/.]

  • Farrell, B. F., 1990: Equable climate dynamics. J. Atmos. Sci., 47, 29862995, doi:10.1175/1520-0469(1990)047<2986:ECD>2.0.CO;2.

  • Flournoy, M., S. B. Feldstein, and S. Lee, 2016: Exploring the tropically excited Arctic warming mechanism with BSRN station data: Links between tropical convection and Arctic downward infrared radiation. J. Atmos. Sci., 73, 11431158, doi:10.1175/JAS-D-14-0271.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, doi:10.1002/qj.768.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., M. Vázquez, R. Nieto, and R. M. Trigo, 2015: Atmospheric moisture transport, the bridge between ocean evaporation and Arctic ice melting. Earth Syst. Dyn., 6, 583589, doi:10.5194/esd-6-583-2015.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, doi:10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, doi:10.1175/JCLI-D-15-0502.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoffert, M. I., and C. Covey, 1992: Deriving global climate sensitivity from paleoclimate reconstructions. Nature, 360, 573576, doi:10.1038/360573a0.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, doi:10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and S. B. Feldstein, 1994: Rossby wave propagation into the tropics in two GFDL general circulation models. Climate Dyn., 9, 245252, doi:10.1007/BF00208256.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2007: Tropical–extratropical interactions related to upper-level troughs at low latitudes. Dyn. Atmos. Oceans, 43, 3662, doi:10.1016/j.dynatmoce.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., J. Barkan, J. S. Breitgand, S. Gualdi, and S. B. Feldstein, 2015: The role of the export of tropical moisture into midlatitudes for extreme precipitation events in the Mediterranean region. Theor. Appl. Climatol., 121, 499515, doi:10.1007/s00704-014-1244-6.

    • Search Google Scholar
    • Export Citation
  • Kump, L. R., and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320, 195, doi:10.1126/science.1153883.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305317, doi:10.1007/s00382-006-0221-x.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 2012: Testing of the tropically excited Arctic warming mechanism (TEAM) with traditional El Niño and La Niña. J. Climate, 25, 40154022, doi:10.1175/JCLI-D-12-00055.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 2014: A theory for polar amplification from a general circulation perspective. Asia-Pac. J. Atmos. Sci., 50, 3143, doi:10.1007/s13143-014-0024-7.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and C. Yoo, 2014: On the causal relationship between poleward heat flux and the equator-to-pole temperature gradient: A cautionary tale. J. Climate, 27, 65196525, doi:10.1175/JCLI-D-14-00236.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., S. B. Feldstein, D. Pollard, and T. S. White, 2011a: Do planetary wave dynamics contribute to equable climates? J. Climate, 24, 23912404, doi:10.1175/2011JCLI3825.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011b: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, doi:10.1002/2014JD022796.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. C. White, 2010: Arctic amplification: Can the past constrain the future? Quat. Sci. Rev., 29, 17791790, doi:10.1016/j.quascirev.2010.02.008.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Mundhenk, B., E. A. Barnes, and E. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, doi:10.1175/JCLI-D-15-0655.1.

    • Search Google Scholar
    • Export Citation
  • NCAR Command Language, 2015: NCL version 6.3.0. UCAR/NCAR–Computational and Information Systems Laboratory. [Available online at http://www.ncl.ucar.edu/Download/.]

  • Neff, W., G. P. Compo, F. M. Ralph, and M. D. Shupe, 2014: Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. J. Geophys. Res. Atmos., 119, 65206536, doi:10.1002/2014JD021470.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Ottino, J., 1990: Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech., 22, 207253, doi:10.1146/annurev.fl.22.010190.001231.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2011: Storms, floods and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265272, doi:10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Roberge, A., J. R. Gyakum, and E. H. Atallah, 2009: Analysis of intense poleward water vapor transports into high latitudes of western North America. Wea. Forecasting, 24, 17321747, doi:10.1175/2009WAF2222198.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281250, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580, doi:10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, V. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 61566174, doi:10.1175/2008JCLI2163.1.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, doi:10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, doi:10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. B. Feldstein, and S. Lee, 2011: The impact of the Madden–Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012a: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 23792393, doi:10.1175/JAS-D-11-0261.1.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012b: Mechanisms of extratropical surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2555 1430 442
PDF Downloads 877 165 20