• Bannon, P. R., 2004: Lagrangian available energetics and parcel instabilities. J. Atmos. Sci., 61, 17541767, doi:10.1175/1520-0469(2004)061<1754:LAEAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 2005: Eulerian available energetics in moist atmospheres. J. Atmos. Sci., 62, 42384252, doi:10.1175/JAS3516.1.

  • Bister, M., , and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and et al. , 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, doi:10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 52395245, doi:10.1175/2008MWR2593.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , J. A. Knaff, , and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, doi:10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2 (1), doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., , and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, doi:10.1175/JAS-D-13-0378.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Haus, B. K., , D. Jeong, , M. A. Donelan, , J. A. Zhang, , and I. Savelyev, 2010: Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of vertical hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • James, R. P., , and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 88 pp.

  • Knaff, J. A., , C. R. Sampson, , P. J. Fitzpatrick, , Y. Jin, , and C. M. Hill, 2011: Simple diagnosis of tropical cyclone structure via pressure gradients. Wea. Forecasting, 26, 10201031, doi:10.1175/WAF-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1978: Available energy and the maintenance of a moist circulation. Tellus, 30A, 1531, doi:10.1111/j.2153-3490.1978.tb00815.x.

    • Search Google Scholar
    • Export Citation
  • Marquet, P., 1991: On the concept of exergy and available enthalpy: Application to atmospheric energetics. Quart. J. Roy. Meteor. Soc., 117, 449475, doi:10.1002/qj.49711749903.

    • Search Google Scholar
    • Export Citation
  • Marquet, P., 1993: Exergy in meteorology: Definition and properties of moist available enthalpy. Quart. J. Roy. Meteor. Soc., 119, 567590, doi:10.1002/qj.49711951112.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., , R. K. Taft, , J. L. Vigh, , B. D. McNoldy, , and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001, doi:10.1029/2011MS000104.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., , and M. T. Montgomery, 2013: An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model. Atmos. Chem. Phys., 13, 59996022, doi:10.5194/acp-13-5999-2013.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Pauluis, O., 2007: Sources and sinks of available potential energy in a moist atmosphere. J. Atmos. Sci., 64, 26272641, doi:10.1175/JAS3937.1.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., , D. S. Nolan, , and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971, doi:10.1002/qj.706.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 39453959, doi:10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2013: Sources and sinks of entropy in the atmosphere. J. Adv. Model. Earth Syst., 5, 755763, doi:10.1002/jame.20050.

  • Raymond, D. J., , C. Lopez-Carrillo, , and L. L. Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034, doi:10.1002/qj.49712455011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , and Z. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, doi:10.1002/qj.125.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , and C. Lopez Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , P. Reasor, , and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 2000: The role of cumulus convection in hurricanes and its representation in hurricane models. Rev. Geophys., 38, 465489, doi:10.1029/1999RG000080.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 2006: Accurate determination of a balanced axisymmetric vortex in a compressible atmosphere. Tellus, 58A, 98103, doi:10.1111/j.1600-0870.2006.00149.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, doi:10.1002/qj.1910.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012a: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, doi:10.1175/JAS-D-11-0232.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012b: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., , and D. Randall, 2015: A numerical investigation of boundary layer quasi-equilibrium. Geophys. Res. Lett., 42, 550556, doi:10.1002/2014GL062649.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , S. J. Camargo, , and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, doi:10.1175/JAS-D-11-0298.1.

  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Ying, Y., , and Q. Zhang, 2012: A modeling study on tropical cyclone structural changes in response to ambient moisture variations. J. Meteor. Soc. Japan, 90, 755770, doi:10.2151/jmsj.2012-512.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., , and E. J. Zipser, 2014: Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Wea. Rev., 142, 12501264, doi:10.1175/MWR-D-13-00253.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 9
PDF Downloads 32 32 9

Sensitivity of Axisymmetric Tropical Cyclone Spinup Time to Dry Air Aloft

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

The sensitivity of tropical cyclone spinup time to the initial entropy deficit of the troposphere is examined in an axisymmetric hurricane model. Larger initial entropy deficits correspond to less moisture above the initial lifting condensation level of a subcloud-layer parcel. The spinup time is quantified in terms of thresholds of integrated horizontal kinetic energy within a radius of 300 km and below a height of 1.5 km. The spinup time increases sublinearly with increasing entropy deficit, indicating the greatest sensitivity lies with initial moisture profiles closer to saturation. As the moisture profile approaches saturation, there is a large increase in the low-level, area-averaged, vertical mass flux over the spinup period because of the predominance of deep convection. Higher entropy deficit experiments have a greater amount of cumulus congestus and reduced vertical mass flux over a longer duration. Consequently, the secondary circulation takes longer to build upward, and the radial influx of angular momentum is reduced. There is also a reduction in the conversion of potential available enthalpy to horizontal kinetic energy, as a result of reduced flow down the radial pressure gradient early in the spinup period. Later in the spinup period, the low-level vortex spins up relatively quickly near the nascent radius of maximum wind in the high-entropy deficit experiments, whereas the low-level vortex spins up over a wider area in the low-entropy deficit experiments.

Corresponding author address: Brian H. Tang, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES 324, 1400 Washington Ave., Albany, NY 12222. E-mail: btang@albany.edu

Abstract

The sensitivity of tropical cyclone spinup time to the initial entropy deficit of the troposphere is examined in an axisymmetric hurricane model. Larger initial entropy deficits correspond to less moisture above the initial lifting condensation level of a subcloud-layer parcel. The spinup time is quantified in terms of thresholds of integrated horizontal kinetic energy within a radius of 300 km and below a height of 1.5 km. The spinup time increases sublinearly with increasing entropy deficit, indicating the greatest sensitivity lies with initial moisture profiles closer to saturation. As the moisture profile approaches saturation, there is a large increase in the low-level, area-averaged, vertical mass flux over the spinup period because of the predominance of deep convection. Higher entropy deficit experiments have a greater amount of cumulus congestus and reduced vertical mass flux over a longer duration. Consequently, the secondary circulation takes longer to build upward, and the radial influx of angular momentum is reduced. There is also a reduction in the conversion of potential available enthalpy to horizontal kinetic energy, as a result of reduced flow down the radial pressure gradient early in the spinup period. Later in the spinup period, the low-level vortex spins up relatively quickly near the nascent radius of maximum wind in the high-entropy deficit experiments, whereas the low-level vortex spins up over a wider area in the low-entropy deficit experiments.

Corresponding author address: Brian H. Tang, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES 324, 1400 Washington Ave., Albany, NY 12222. E-mail: btang@albany.edu
Save