• Abatzoglou, J. T., , and G. Magnusdottir, 2004: Nonlinear planetary wave reflection in the troposphere. Geophys. Res. Lett., 31, L09101, doi:10.1029/2004GL019495.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., , and G. Magnusdottir, 2006: Opposing effects of reflective and nonreflective planetary wave breaking on the NAO. J. Atmos. Sci., 63, 34483457, doi:10.1175/JAS3809.1.

    • Search Google Scholar
    • Export Citation
  • Arakelian, A., , and F. Codron, 2012: Southern Hemisphere jet variability in the IPSL GCM at varying resolutions. J. Atmos. Sci., 69, 37883799, doi:10.1175/JAS-D-12-0119.1.

    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., , and S. Garner, 1997: The role of momentum fluxes in shaping the life cycle of a baroclinic wave. J. Atmos. Sci., 54, 510533, doi:10.1175/1520-0469(1997)054<0510:TROMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2010: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations. Geophys. Res. Lett., 37, L15801, doi:10.1029/2010GL044144.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and L. M. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Atmos. Sci., 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., , and P. H. Haynes, 1996: Low-latitude reflection of Rossby wave trains. J. Atmos. Sci., 53, 482496, doi:10.1175/1520-0469(1996)053<0482:LLRORW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495150, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S., , and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 30773086, doi:10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: Structural changes of growing baroclinic waves. J. Atmos. Sci., 33, 374390, doi:10.1175/1520-0469(1976)033<0374:SCOGBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geisler, J., , and R. Dickinson, 1974: Numerical study of an interacting Rossby wave and barotropic zonal flow near a critical level. J. Atmos. Sci., 31, 946955, doi:10.1175/1520-0469(1974)031<0946:NSOAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, E., , and G. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Search Google Scholar
    • Export Citation
  • Held, I., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, R. P. Pearce and B. J. Hoskins, Eds., Academic Press, 127–168.

  • Held, I., , and M. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J., 1992: An Introduction to Dynamic Meteorology. 3rd ed. International Geophysics Series, Vol. 48, Academic Press, 511 pp.

  • Hoskins, B. J., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Killworth, P., , and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, doi:10.1017/S0022112085003019.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014: Understanding midlatitude jet variability and change using Rossby wave chromatography: Wave–mean flow interaction. J. Atmos. Sci., 71, 36843705, doi:10.1175/JAS-D-13-0201.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., , and P. H. Haynes, 1999: Reflection of planetary waves in three-dimensional tropospheric flows. J. Atmos. Sci., 56, 652670, doi:10.1175/1520-0469(1999)056<0652:ROPWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818, doi:10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Rourke, A. K., , and G. Vallis, 2013: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J. Atmos. Sci., 70, 26142628, doi:10.1175/JAS-D-12-0303.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implication for storm-track variability. J. Atmos. Sci., 60, 9931023, doi:10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 1982: Properties of the Eliassen–Palm flux for planetary scale motions. J. Atmos. Sci., 39, 992997, doi:10.1175/1520-0469(1982)039<0992:POTEPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53, 35563569, doi:10.1175/1520-0469(1996)053<3556:DEFSVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 21092122, doi:10.1175/JAS3732.1.

  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, I., , T. Shepherd, , P. Hitchcock, , and J. F. Scinocca, 2014: Southern annular mode dynamics in observations and models. Part II: Eddy feedbacks. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., Ed., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Watterson, I., 2002: Wave–mean flow feedback and the persistence of simulated zonal flow vacillation. J. Atmos. Sci., 59, 12741288, doi:10.1175/1520-0469(2002)059<1274:WMFFAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, doi:10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , X.-Q. Yang, , Y. Nie, , and G. Chen, 2012: Annular mode–like variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 29402958, doi:10.1175/JAS-D-11-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , J. Blanco-Fuentes, , and E. Gerber, 2014: The impact of baroclinic eddy feedback on the persistence of jet variability in the two-layer model. J. Atmos. Sci., 71, 410429, doi:10.1175/JAS-D-13-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 3
PDF Downloads 5 5 2

A Short-Term Negative Eddy Feedback on Midlatitude Jet Variability due to Planetary Wave Reflection

View More View Less
  • 1 Laboratoire de Météorologie Dynamique/IPSL, Ecole Normale Supérieure/CNRS/UPMC, Paris, France
  • | 2 LOCEAN/IPSL, Université Pierre et Marie Curie/CNRS/IRD, Paris, France
© Get Permissions
Restricted access

Abstract

A three-level quasigeostrophic model on the sphere is used to identify the physical nature of the negative planetary wave feedback on midlatitude jet variability. A first approach consists of studying the nonlinear evolution of normal-mode disturbances in a baroclinic westerly zonal jet. For a low-zonal-wavenumber disturbance, successive acceleration and deceleration of the jet occur as a result of reflection of the wave on either side of the jet. The planetary wave deposits momentum in opposite ways during its poleward or equatorward propagation. In contrast, a high-zonal-wavenumber disturbance is not reflected but absorbed within the subtropical critical layer. It thus only induces poleward momentum fluxes, which accelerate the jet and shift it slightly poleward. A long-term simulation forced by a relaxation toward a zonally symmetric temperature profile is then analyzed. Planetary waves are shown to be baroclinically excited. When they propagate equatorward, they induce an acceleration of the jet together with a slight poleward shift. About two-thirds of the planetary waves are absorbed by the subtropical critical layer, which allows the accelerated poleward-shifted jet to persist for a while. For the remaining third, the potential vorticity equatorward of the jet is so well homogenized that a reflection occurs. It is followed by an abrupt jet deceleration during the subsequent poleward propagation. The reflection of planetary waves on the poleward side of the jet is more systematic because of the quasi-permanent presence of a turning latitude there. This negative planetary wave feedback is shown to act more on pulses of the jet than on its latitudinal shifts.

Corresponding author address: Gwendal Rivière, LMD-ENS, 24 rue Lhomond, 75005 Paris, France. E-mail: griviere@lmd.ens.fr

Abstract

A three-level quasigeostrophic model on the sphere is used to identify the physical nature of the negative planetary wave feedback on midlatitude jet variability. A first approach consists of studying the nonlinear evolution of normal-mode disturbances in a baroclinic westerly zonal jet. For a low-zonal-wavenumber disturbance, successive acceleration and deceleration of the jet occur as a result of reflection of the wave on either side of the jet. The planetary wave deposits momentum in opposite ways during its poleward or equatorward propagation. In contrast, a high-zonal-wavenumber disturbance is not reflected but absorbed within the subtropical critical layer. It thus only induces poleward momentum fluxes, which accelerate the jet and shift it slightly poleward. A long-term simulation forced by a relaxation toward a zonally symmetric temperature profile is then analyzed. Planetary waves are shown to be baroclinically excited. When they propagate equatorward, they induce an acceleration of the jet together with a slight poleward shift. About two-thirds of the planetary waves are absorbed by the subtropical critical layer, which allows the accelerated poleward-shifted jet to persist for a while. For the remaining third, the potential vorticity equatorward of the jet is so well homogenized that a reflection occurs. It is followed by an abrupt jet deceleration during the subsequent poleward propagation. The reflection of planetary waves on the poleward side of the jet is more systematic because of the quasi-permanent presence of a turning latitude there. This negative planetary wave feedback is shown to act more on pulses of the jet than on its latitudinal shifts.

Corresponding author address: Gwendal Rivière, LMD-ENS, 24 rue Lhomond, 75005 Paris, France. E-mail: griviere@lmd.ens.fr
Save