Visibility: How Applicable is the Century-Old Koschmieder Model?

Zhongping Lee School for the Environment, University of Massachusetts Boston, Boston, Massachusetts

Search for other papers by Zhongping Lee in
Current site
Google Scholar
PubMed
Close
and
Shaoling Shang State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China

Search for other papers by Shaoling Shang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Koschmieder proposed that visibility is inversely proportional to the extinction coefficient of air, and this model has been widely adopted during the past century. Using radiative transfer theory, the authors present a general relationship for the law of contrast reduction and point out that the Koschmieder model is workable only to situations when a common-size object can be viewed tens of kilometers away. However, the Koschmieder model is not applicable for viewable distances of hundreds of meters when the angular dimension of an object is significantly greater than the eye resolution of the human being. The authors further separate the term “visible” into “simple detection” or “detectability” and “clear identification” or “identifiability” and point out that the Koschmieder model is applicable to identifiability, but not necessarily for detectability. In addition, the way of calculating contrast is revised to follow the concept of brightness constancy. The results of this effort advocate the measurement and distribution of detectability in harsh weather conditions, as such data offer more useful and important information for daily life.

Corresponding author address: Zhongping Lee, School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125.E-mail: zhongping.lee@umb.edu

Abstract

Koschmieder proposed that visibility is inversely proportional to the extinction coefficient of air, and this model has been widely adopted during the past century. Using radiative transfer theory, the authors present a general relationship for the law of contrast reduction and point out that the Koschmieder model is workable only to situations when a common-size object can be viewed tens of kilometers away. However, the Koschmieder model is not applicable for viewable distances of hundreds of meters when the angular dimension of an object is significantly greater than the eye resolution of the human being. The authors further separate the term “visible” into “simple detection” or “detectability” and “clear identification” or “identifiability” and point out that the Koschmieder model is applicable to identifiability, but not necessarily for detectability. In addition, the way of calculating contrast is revised to follow the concept of brightness constancy. The results of this effort advocate the measurement and distribution of detectability in harsh weather conditions, as such data offer more useful and important information for daily life.

Corresponding author address: Zhongping Lee, School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125.E-mail: zhongping.lee@umb.edu
Save
  • Aas, E., J. Høkedal, and K. Sørensen, 2014: Secchi depth in the Oslofjord–Skagerrak area: Theory, experiments and relationships to other quantities. Ocean Sci., 10, 177199, doi:10.5194/os-10-177-2014.

    • Search Google Scholar
    • Export Citation
  • Ahmed, M., M. Abdel-Aty, S. Qi, and M. Abuzwidah, 2014: Synthesis of state-of-the-art in visibility detection systems’ applications and research. J. Transp. Saf. Secur., 6, 183206, doi:10.1080/19439962.2013.824055.

    • Search Google Scholar
    • Export Citation
  • Allard, D., and I. Tombach, 1981: The effects of non-standard conditions on visibility measurement. Atmos. Environ., 15, 18471857, doi:10.1016/0004-6981(81)90220-1.

    • Search Google Scholar
    • Export Citation
  • Blackwell, H. R., 1946: Contrast thresholds of the human eye. J. Opt. Soc. Amer., 36, 624643, doi:10.1364/JOSA.36.000624.

  • Chandrasekhar, S., 1960: Radiative Transfer. Dover, 393 pp.

  • Clark, R. N., 1990: Visual Astronomy of the Deep Sky. Cambridge University Press, Cambridge, 355 pp.

  • Curcio, C. A., K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, 1990: Human photoreceptor topography. J. Comp. Neurol., 292, 497523, doi:10.1002/cne.902920402.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and S. L. Eigsti, 1981: Regional visibility modeling for the Eastern United States. Atmos. Environ., 15, 20552061, doi:10.1016/0004-6981(81)90238-9.

    • Search Google Scholar
    • Export Citation
  • Doyle, M., and S. Dorling, 2002: Visibility trends in the UK 1950–1997. Atmos. Environ., 36, 31613172, doi:10.1016/S1352-2310(02)00248-0.

    • Search Google Scholar
    • Export Citation
  • Duntley, S. Q., 1948a: The reduction of apparent contrast by the atmosphere. J. Opt. Soc. Amer., 38, 179191, doi:10.1364/JOSA.38.000179.

    • Search Google Scholar
    • Export Citation
  • Duntley, S. Q., 1948b: The visibility of distant objects. J. Opt. Soc. Amer., 38, 237249, doi:10.1364/JOSA.38.000237.

  • Duntley, S. Q., 1952: The visibility of submerged objects. Massachusetts Institute of Technology Visibility Laboratory Final Rep., 74 pp.

  • Freeman, R. B., Jr., 1967: Contrast interpretation of brightness constancy. Psychol. Bull., 67, 165187, doi:10.1037/h0024256.

  • Gordon, J. I., 1979: Daytime visibility, a conceptual review. Scripps Institution of Oceanography Visibility Laboratory Scientific Rep. 11, 17 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA085451.]

  • Horvath, H., 1971: On the applicability of the Koschmieder visibility formula. Atmos. Environ., 5, 177184, doi:10.1016/0004-6981(71)90081-3.

    • Search Google Scholar
    • Export Citation
  • Horvath, H., 1981: Atmospheric visibility. Atmos. Environ., 15, 17851796, doi:10.1016/0004-6981(81)90214-6.

  • Horvath, H., and K. E. Noll, 1969: The relationship between atmospheric light scattering coefficient and visibility. Atmos. Environ., 3, 543552, doi:10.1016/0004-6981(69)90044-4.

    • Search Google Scholar
    • Export Citation
  • Hou, W., Z.-P. Lee, and A. D. Weidemann, 2007: Why does the Secchi disk disappear? An imaging perspective. Opt. Express, 15, 27912802, doi:10.1364/OE.15.002791.

    • Search Google Scholar
    • Export Citation
  • Lee, Z., S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, 2015: Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ., 169, 139149, doi:10.1016/j.rse.2015.08.002.

    • Search Google Scholar
    • Export Citation
  • Ma, N., and Coauthors, 2011: Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study. Atmos. Chem. Phys., 11, 59595973, doi:10.5194/acp-11-5959-2011.

    • Search Google Scholar
    • Export Citation
  • Majewski, G., W. Rogula-Kozłowska, P. O. Czechowski, A. Badyda, and A. Brandyk, 2015: The impact of selected parameters on visibility: First results from a long-term campaign in Warsaw, Poland. Atmosphere, 6, 11541174, doi:10.3390/atmos6081154.

    • Search Google Scholar
    • Export Citation
  • Malm, W. C., K. K. Leiker, and J. V. Molenar, 1980: Human perception of visual air quality. J. Air Pollut. Control Assoc., 30, 122131, doi:10.1080/00022470.1980.10465927.

    • Search Google Scholar
    • Export Citation
  • Marthinsen, E., 2015: Including aerosol effects for improved visibility forecasts in HARMONIE. Utrecht University and KNMI, 48 pp. [Available online at http://dspace.library.uu.nl/bitstream/handle/1874/320195/E.Marthinsen%20MSc%20Thesis.pdf?sequence=2.]

  • Middleton, W. E. K., 1947: Visibility in Meteorology: The Theory and Practice of the Measurement of the Visual Range. University of Toronto Press, 165 pp.

  • Preisendorfer, R. W., 1986: Secchi disk science: Visual optics of natural waters. Limnol. Oceanogr., 31, 909926, doi:10.4319/lo.1986.31.5.0909.

    • Search Google Scholar
    • Export Citation
  • Wells, W. H., 1973: Theory of small angle scattering. Optics of the Sea: Interface and In-Water Transmission and Imaging, P. Halley, Ed., AGARD Lecture Series, Vol. 61, AGARD, 3.3.1–3.3.7.

  • Xu, C., H. Zhang, and J. Cheng, 2015: Effects of haze particles and fog droplets on NLOS ultraviolet communication channels. Opt. Express, 23, 23 25923 269, doi:10.1364/OE.23.023259.

    • Search Google Scholar
    • Export Citation
  • Zaneveld, J. R., and W. S. Pegau, 2003: Robust underwater visibility parameter. Opt. Express, 11, 29973009, doi:10.1364/OE.11.002997.

    • Search Google Scholar
    • Export Citation
  • Zege, E. P., A. P. Ivanov, and I. L. Katsev, 1991: Image Transfer through a Scattering Medium. Springer-Verlag, 349 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5700 1584 229
PDF Downloads 4093 842 103