• Abalos, M., , B. Legras, , F. Ploeger, , and W. J. Randel, 2015: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120, 75347554, doi:10.1002/2015JD023182.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer–Dobson circulation. Rev. Geophys., 52, 157184, doi:10.1002/2013RG000448.

  • Butchart, N., and et al. , 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and et al. , 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and et al. , 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and et al. , 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831, doi:10.1038/ngeo388.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , P. Lin, , S. Solomon, , and D. L. Hartmann, 2015: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980. J. Geophys. Res. Atmos., 120, 10 21410 228, doi:10.1002/2015JD023657.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , W. J. Randel, , and D. E. Kinnison, 2011: On the determination of age of air trends from atmospheric trace species. J. Atmos. Sci., 68, 139154, doi:10.1175/2010JAS3527.1.

    • Search Google Scholar
    • Export Citation
  • Garny, H., , T. Birner, , H. Boenisch, , and F. Bunzel, 2014: The effects of mixing on age of air. J. Geophys. Res. Atmos., 119, 70157034, doi:10.1002/2013JD021417.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., 2012: Stratospheric versus tropospheric control of the strength and structure of the Brewer–Dobson circulation. J. Atmos. Sci., 69, 28572877, doi:10.1175/JAS-D-11-0341.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, doi:10.1175/2008JCLI2548.1.

    • Search Google Scholar
    • Export Citation
  • Haenel, F. J., and et al. , 2015: Reassessment of MIPAS age of air trends and variability. Atmos. Chem. Phys., 15, 13 16113 176, doi:10.5194/acp-15-13161-2015.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., , and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 10591070, doi:10.1029/93JD03192.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., , D. W. Waugh, , K. A. Boering, , and R. A. Plumb, 1999: Evaluation of transport in stratospheric models. J. Geophys. Res., 104, 18 81518 839, doi:10.1029/1999JD900226.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., , N. Butchart, , and N. Calvo, 2014: The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc., 140, 19581965, doi:10.1002/qj.2258.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climate, 19, 57215727, doi:10.1175/JCLI4007.1.

    • Search Google Scholar
    • Export Citation
  • Legras, B., , B. Joseph, , and F. Lefèvre, 2003: Vertical diffusivity in the lower stratosphere from Lagrangian back-trajectory reconstructions of ozone profiles. J. Geophys. Res., 108, 4562, doi:10.1029/2002JD003045.

    • Search Google Scholar
    • Export Citation
  • Neu, J. L., , and R. A. Plumb, 1999: Age of air in a “leaky pipe” model of stratospheric transport. J. Geophys. Res., 104, 19 24319 255, doi:10.1029/1999JD900251.

    • Search Google Scholar
    • Export Citation
  • Oberländer-Hayn, S., and et al. , 2016: Is the Brewer–Dobson circulation increasing or moving upward? Geophys. Res. Lett., 43, 17721779, doi:10.1002/2015GL067545.

    • Search Google Scholar
    • Export Citation
  • Ploeger, F., , M. Abalos, , T. Birner, , P. Konopka, , B. Legras, , R. Müller, , and M. Riese, 2015a: Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air. Geophys. Res. Lett., 42, 20472054, doi:10.1002/2014GL062927.

    • Search Google Scholar
    • Export Citation
  • Ploeger, F., , M. Riese, , F. Haenel, , P. Konopka, , R. Müller, , and G. Stiller, 2015b: Variability of stratospheric mean age of air and of the local effects of residual circulation and eddy mixing. J. Geophys. Res. Atmos., 120, 716733, doi:10.1002/2014JD022468.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, doi:10.2151/jmsj.80.793.

  • Plumb, R. A., 2007: Tracer interrelationships in the stratosphere. Rev. Geophys., 45, RG4005, doi:10.1029/2005RG000179.

  • Polvani, L. M., , and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 4043, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., and et al. , 2010: Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis. J. Geophys. Res., 115, D21304, doi:10.1029/2010JD014206.

    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., , R. A. Plumb, , and E. P. Gerber, 2015: Seasonal variability of the polar stratospheric vortex in an idealized AGCM with varying tropospheric wave forcing. J. Atmos. Sci., 72, 22482266, doi:10.1175/JAS-D-14-0191.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., , and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Sparling, L. C., , J. A. Kettleborough, , P. H. Haynes, , M. E. McIntyre, , J. E. Rosenfield, , M. R. Schoeberl, , and P. A. Newman, 1997: Diabatic cross-isentropic dispersion in the lower stratosphere. J. Geophys. Res., 102, 25 81725 829, doi:10.1029/97JD01968.

    • Search Google Scholar
    • Export Citation
  • Stiller, G. P., and et al. , 2012: Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period. Atmos. Chem. Phys., 12, 33113331, doi:10.5194/acp-12-3311-2012.

    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., and et al. , 2011: Using transport diagnostics to understand chemistry climate model ozone simulations. J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.

    • Search Google Scholar
    • Export Citation
  • Volk, C. M., and et al. , 1997: Evaluation of source gas lifetimes from stratospheric observations. J. Geophys. Res., 102, 25 54325 564, doi:10.1029/97JD02215.

    • Search Google Scholar
    • Export Citation
  • Waugh, D., , and T. M. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1010, doi:10.1029/2000RG000101.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 10
PDF Downloads 78 78 12

The Relationship between Age of Air and the Diabatic Circulation of the Stratosphere

View More View Less
  • 1 Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program in Physical Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 4 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

The strength of the Brewer–Dobson circulation is difficult to estimate using observations. Trends in the age of stratospheric air, deduced from observations of transient tracers, have been used to identify trends in the circulation, but there are ambiguities in the relationship between age and the strength of the circulation. This paper presents a steady-state theory and a time-dependent extension to relate age of air directly to the diabatic circulation of the stratosphere. In steady state, it is the difference between the age of upwelling and downwelling air through an isentrope and not the absolute value of age that is a measure of the strength of the diabatic circulation through that isentrope. For the time-varying case, expressions for other terms that contribute to the age budget are derived. An idealized atmospheric general circulation model with and without a seasonal cycle is used to test the time-dependent theory and to find that these additional terms are small upon annual averaging. The steady-state theory holds as well for annual averages of a seasonally varying model as for a perpetual-solstice model. These results are a step toward using data to quantify the strength of the diabatic circulation.

Corresponding author address: Marianna Linz, Massachusetts Institute of Technology, 77 Massachusetts Ave., 54-1615, Cambridge, MA 02139. E-mail: mlinz@mit.edu

Abstract

The strength of the Brewer–Dobson circulation is difficult to estimate using observations. Trends in the age of stratospheric air, deduced from observations of transient tracers, have been used to identify trends in the circulation, but there are ambiguities in the relationship between age and the strength of the circulation. This paper presents a steady-state theory and a time-dependent extension to relate age of air directly to the diabatic circulation of the stratosphere. In steady state, it is the difference between the age of upwelling and downwelling air through an isentrope and not the absolute value of age that is a measure of the strength of the diabatic circulation through that isentrope. For the time-varying case, expressions for other terms that contribute to the age budget are derived. An idealized atmospheric general circulation model with and without a seasonal cycle is used to test the time-dependent theory and to find that these additional terms are small upon annual averaging. The steady-state theory holds as well for annual averages of a seasonally varying model as for a perpetual-solstice model. These results are a step toward using data to quantify the strength of the diabatic circulation.

Corresponding author address: Marianna Linz, Massachusetts Institute of Technology, 77 Massachusetts Ave., 54-1615, Cambridge, MA 02139. E-mail: mlinz@mit.edu
Save