Canonical Transfer and Multiscale Energetics for Primitive and Quasigeostrophic Atmospheres

X. San Liang School of Marine Sciences, and School of Atmospheric Sciences, Nanjing Institute of Meteorology, Nanjing, China

Search for other papers by X. San Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The past years have seen the success of a novel and rigorous localized multiscale energetics formalism in a variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the atmospheric dynamical diagnostics, with important theoretical updates and clarifications of some common misconceptions about multiscale energy. Multiscale equations are derived using a new analysis apparatus—namely, multiscale window transform—with respect to both the primitive equation and quasigeostrophic models. A reconstruction of the “atomic” energy fluxes on the multiple scale windows allows for a natural and unique separation of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket in Hamiltonian mechanics; hence, we would call them “canonical.” A canonical transfer process is a mere redistribution of energy among scale windows, without generating or destroying energy as a whole. By classification, a multiscale energetic cycle comprises available potential energy (APE) transport, kinetic energy (KE) transport, pressure work, buoyancy conversion, work done by external forcing and friction, and the cross-scale canonical transfers of APE and KE, which correspond respectively to the baroclinic and barotropic instabilities in geophysical fluid dynamics. A buoyancy conversion takes place in an individual window only, bridging the two types of energy, namely, KE and APE; it does not involve any processes among different scale windows and is hence basically not related to instabilities. This formalism is exemplified with a preliminary application to the study of the Madden–Julian oscillation.

Denotes Open Access content.

Corresponding author address: X. San Liang, Center for Ocean-Atmosphere Dynamical Studies, S-308 Wende Building, Nanjing Institute of Meteorology, 219 Ningliu Blvd., Nanjing 210044, China. E-mail: san@pacific.harvard.edu

Abstract

The past years have seen the success of a novel and rigorous localized multiscale energetics formalism in a variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the atmospheric dynamical diagnostics, with important theoretical updates and clarifications of some common misconceptions about multiscale energy. Multiscale equations are derived using a new analysis apparatus—namely, multiscale window transform—with respect to both the primitive equation and quasigeostrophic models. A reconstruction of the “atomic” energy fluxes on the multiple scale windows allows for a natural and unique separation of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket in Hamiltonian mechanics; hence, we would call them “canonical.” A canonical transfer process is a mere redistribution of energy among scale windows, without generating or destroying energy as a whole. By classification, a multiscale energetic cycle comprises available potential energy (APE) transport, kinetic energy (KE) transport, pressure work, buoyancy conversion, work done by external forcing and friction, and the cross-scale canonical transfers of APE and KE, which correspond respectively to the baroclinic and barotropic instabilities in geophysical fluid dynamics. A buoyancy conversion takes place in an individual window only, bridging the two types of energy, namely, KE and APE; it does not involve any processes among different scale windows and is hence basically not related to instabilities. This formalism is exemplified with a preliminary application to the study of the Madden–Julian oscillation.

Denotes Open Access content.

Corresponding author address: X. San Liang, Center for Ocean-Atmosphere Dynamical Studies, S-308 Wende Building, Nanjing Institute of Meteorology, 219 Ningliu Blvd., Nanjing 210044, China. E-mail: san@pacific.harvard.edu
Save
  • Andrews, D., and M. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., 2005: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38, 123146, doi:10.1016/j.dynatmoce.2004.11.003.

  • Boyd, J., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 22852291, doi:10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2009: Waves and Mean Flows. Cambridge University Press, 370 pp.

  • Cai, M., and M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47, 14171442, doi:10.1175/1520-0469(1990)047<1417:OTBDOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. M. van den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, doi:10.1111/j.1600-0870.2006.00213.x.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., A. E. Kiss, and S. R. Rintoul, 2015: The dynamics of Southern Ocean storm tracks. J. Phys. Oceanogr., 45, 884903, doi:10.1175/JPO-D-14-0075.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flier, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a globally eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, doi:10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., 1994: Vorticity and Turbulence. Springer-Verlag, 173 pp.

  • Dewar, W. K., and J. M. Bane, 1989: Gulf Stream dynamics. Part II. Eddy energetics at 73°W. J. Phys. Oceanogr., 19, 15741587, doi:10.1175/1520-0485(1989)019<1574:GSDPIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1969: Theory of planetary wave-zonal flow interaction. J. Atmos. Sci., 26, 7381, doi:10.1175/1520-0469(1969)026<0073:TOPWZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Fels, S. B., and R. S. Lindzen, 1974: The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn., 6, 149191, doi:10.1080/03091927409365793.

    • Search Google Scholar
    • Export Citation
  • Fournier, A., 2002: Atmospheric energetics in the wavelet domain. Part I: Governing equations and interpretation for idealized flows. J. Atmos. Sci., 59, 11821197, doi:10.1175/1520-0469(2002)059<1182:AEITWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150160, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432, doi:10.1175/1520-0485(1998)028<0422:ETRBEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., J. C. McWilliams, and P. Gent, 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr., 22, 882902, doi:10.1175/1520-0485(1992)022<0882:BCSIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows—Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, doi:10.1016/0377-0265(78)90009-X.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 1988: Forced, dissipative generalizations of finite-amplitude wave-activity conservation relations for zonal and nonzonal basic flows. J. Atmos. Sci., 45, 23522362, doi:10.1175/1520-0469(1988)045<2352:FDGOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean–numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392, doi:10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, doi:10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., 1978: A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15, 125145.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., J. Brian, I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, doi:10.1175/2010JCLI3833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417457, doi:10.1146/annurev.fluid.31.1.417.

    • Search Google Scholar
    • Export Citation
  • Iima, M., and S. Toh, 1995: Wavelet analysis of the energy transfer caused by convective terms: Application to the Burgers shock. Phys. Rev., 52E, 61896201.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 2005: Boussinesq and anelastic approximations revisited: Potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 13591369, doi:10.1175/JPO2756.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 2010: Eddy-induced instability for low-frequency variability. J. Atmos. Sci., 67, 19471964, doi:10.1175/2009JAS3185.1.

  • Kao, S. K., 1968: Governing equations and spectra for atmospheric motion and transports in frequency, wave-number space. J. Atmos. Sci., 25, 3238, doi:10.1175/1520-0469(1968)025<0032:GEASFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2004: A study of the Iceland–Faeroe frontal variability using the multiscale energy and vorticity analysis. J. Phys. Oceanogr., 34, 25712591, doi:10.1175/JPO2661.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and M. Wang, 2004: A study of turbulent wakes using a novel localized stability analysis. Proc. Summer Program 2004, Stanford, CA, Stanford Center for Turbulence Research and NASA Ames Research Center, 211–222. [Available online at https://web.stanford.edu/group/ctr/ctrsp04/liang.pdf.]

  • Liang, X. S., and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230, doi:10.1016/j.dynatmoce.2004.12.004.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. SIAM J. Multiscale Model. Simul., 6, 437467, doi:10.1137/06066895X.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, doi:10.1016/j.dynatmoce.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2009: Multiscale processes and nonlinear dynamics of the circulation and upwelling events off Monterey Bay. J. Phys. Oceanogr., 39, 290313, doi:10.1175/2008JPO3950.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1987: Atmospheric dynamics: U.S. national report to International Union of Geodesy and Geophysics 1983-1986. Rev. Geophys., 25, 323328, doi:10.1029/RG025i003p00323.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Luo, D., J. Cha, L. Zhong, and A. Dai, 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 17851808, doi:10.1002/qj.2337.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer, 1–18.

  • Majda, A. J., and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101, 47364741, doi:10.1073/pnas.0401034101.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and Q. Yang, 2016: A multiscale model for the intraseasonal impact of the diurnal cycle over the maritime continent on the Madden–Julian oscillation. J. Atmos. Sci., 73, 579604, doi:10.1175/JAS-D-15-0158.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204, doi:10.1016/j.ocemod.2010.02.001.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., 1984: Eddy-mean-flow interaction in a barotropic ocean model. Quart. J. Roy. Meteor. Soc., 110, 573590, doi:10.1002/qj.49711046502.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1980: An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure Appl. Geophys., 118, 152176, doi:10.1007/BF01586449.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, doi:10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538, doi:10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760768, doi:10.1175/2010JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 67, 39673983, doi:10.1175/2010JAS3503.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Pinardi, N., and A. R. Robinson, 1986: Quasigeostrophic energetics of open ocean regions. Dyn. Atmos. Oceans, 10, 185219, doi:10.1016/0377-0265(86)90013-8.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, doi:10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time–mean flow. J. Atmos. Sci., 43, 16571678, doi:10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2004: Turbulent Flows. Cambridge University Press, 771 pp.

  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289325, doi:10.1016/0377-0265(79)90015-0.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Academic Press, 627 pp.

  • Saltzman, B., 1957: Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of wave number. J. Meteor., 14, 513523, doi:10.1175/1520-0469(1957)014<0513:EGTEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saltzman, B., 1970: Large-scale atmospheric energetics in the wave-number domain. Rev. Geophys. Space Phys., 8, 289302, doi:10.1029/RG008i002p00289.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Y. Hayashi, 1990: Estimation of atmospheric energetics in the frequency domain during the FGGE year. J. Atmos. Sci., 47, 12551268, doi:10.1175/1520-0469(1990)047<1255:EOAEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strang, G., and T. Nguyen, 1997: Wavelets and Filter Banks. 2nd ed. Wellesley-Cambridge Press, 520 pp.

  • Su, Z., A. Ingersoll, A. Steward, and A. Thompson, 2016: Ocean convective available potential energy. Part II: Energetics of thermobaric convection and thermobaric cabbeling. J. Phys. Oceanogr., 46, 10971115, doi:10.1175/JPO-D-14-0156.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy and energy in stratified fluids. Annu. Rev. Fluid Mech., 45, 3558, doi:10.1146/annurev-fluid-011212-140620.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winters, K., and R. Barkan, 2013: Available potential energy density for Boussinesq fluid flow. J. Fluid Mech., 714, 476488, doi:10.1017/jfm.2012.493.

    • Search Google Scholar
    • Export Citation
  • Winters, K., P. Lombard, J. Riley, and E. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2891 1416 301
PDF Downloads 1405 356 32