An Idealized Numerical Simulation Investigation of the Effects of Surface Drag on the Development of Near-Surface Vertical Vorticity in Supercell Thunderstorms

Paul M. Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized simulations are used to investigate the contributions of frictionally generated horizontal vorticity to the development of near-surface vertical vorticity in supercell storms. Of interest is the relative importance of barotropic vorticity (vorticity present in the prestorm environment), baroclinic vorticity (vorticity that is principally generated by horizontal buoyancy gradients), and viscous vorticity (vorticity that originates from the subgrid-scale turbulence parameterization, wherein the effects of surface drag reside), all of which can be advected, tilted, and stretched. Equations for the three partial vorticities are integrated in parallel with the model. The partial vorticity calculations are complemented by analyses of circulation following material circuits, which are often able to be carried out further in time because they are less susceptible to explosive error growth.

Near-surface mesocyclones that develop prior to cold-pool formation (this only happens when the environmental vorticity is crosswise near the surface) are dominated by only barotropic vertical vorticity when the lower boundary is free slip, but both barotropic and viscous vertical vorticity when surface drag is included. Baroclinic vertical vorticity grows large once a cold pool is established, regardless of the lower boundary condition and, in fact, dominates at the time the vortices are most intense in all but one simulation (a simulation dominated early by a barotropic mode of vortex genesis that may not be relevant to real convective storms).

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu

Abstract

Idealized simulations are used to investigate the contributions of frictionally generated horizontal vorticity to the development of near-surface vertical vorticity in supercell storms. Of interest is the relative importance of barotropic vorticity (vorticity present in the prestorm environment), baroclinic vorticity (vorticity that is principally generated by horizontal buoyancy gradients), and viscous vorticity (vorticity that originates from the subgrid-scale turbulence parameterization, wherein the effects of surface drag reside), all of which can be advected, tilted, and stretched. Equations for the three partial vorticities are integrated in parallel with the model. The partial vorticity calculations are complemented by analyses of circulation following material circuits, which are often able to be carried out further in time because they are less susceptible to explosive error growth.

Near-surface mesocyclones that develop prior to cold-pool formation (this only happens when the environmental vorticity is crosswise near the surface) are dominated by only barotropic vertical vorticity when the lower boundary is free slip, but both barotropic and viscous vertical vorticity when surface drag is included. Baroclinic vertical vorticity grows large once a cold pool is established, regardless of the lower boundary condition and, in fact, dominates at the time the vortices are most intense in all but one simulation (a simulation dominated early by a barotropic mode of vortex genesis that may not be relevant to real convective storms).

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 2671–2691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, J. Chang, Ed., General Circulation Models of the Atmosphere, Vol. 17, Academic Press, 173–265, doi:10.1016/B978-0-12-460817-7.50009-4.

  • Banacos, P. C., and H. B. Bluestein, 2004: Hodograph variability within analytically modeled, synoptic-scale, baroclinic systems. Mon. Wea. Rev., 132, 1448–1461, doi:10.1175/1520-0493(2004)132<1448:HVWAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasseur, J., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 2058–2077, doi:10.1175/JAS3456.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 4929–4942, doi:10.1175/MWR-D-15-0115.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 3027–3051, doi:10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2000: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57, 715–736, doi:10.1175/1520-0469(2000)057<0715:ALMFBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 2469–2497, doi:10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274–291, doi:10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221, doi:10.1175/0065-9401-28.50.167.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2002: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 1166–1181, doi:10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and R. Rotunno, 2005: The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci., 62, 3127–3150, doi:10.1175/JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. M. Markowski, 2010: Numerical simulations of radiative cooling beneath the anvils of supercell thunderstorms. Mon. Wea. Rev., 138, 3024–3047, doi:10.1175/2010MWR3177.1.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. M. Markowski, 2013: Dynamical influences of anvil shading on simulated supercell thunderstorms. Mon. Wea. Rev., 141, 2802–2820, doi:10.1175/MWR-D-12-00146.1.

    • Search Google Scholar
    • Export Citation
  • Gibbs, J. A., E. Fedorovich, and A. M. J. van Eijk, 2011: Evaluating Weather Research and Forecasting (WRF) Model predictions of turbulent flow parameters in a dry convective boundary layer. J. Appl. Meteor. Climatol., 50, 2429–2444, doi:10.1175/2011JAMC2661.1.

    • Search Google Scholar
    • Export Citation
  • Grötzbach, G., 1987: Direct numerical and large eddy simulations of turbulent channel flows. Complex Flow Phenomena and Modeling, N. P. Cheremisinoff, Ed., Vol. 6, Encyclopedia of Fluid Mechanics, Gulf Publishing, 1337–1391.

  • Howells, P. A., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114, 801–822, doi:10.1002/qj.49711448113.

    • Search Google Scholar
    • Export Citation
  • Hultmark, M. C., M. Calaf, and M. B. Parlange, 2013: A new wall shear stress model for atmospheric boundary layer simulations. J. Atmos. Sci., 70, 3460–3470, doi:10.1175/JAS-D-12-0257.1.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., 2012: An explicit time-difference scheme with an Adams–Bashforth predictor and a trapezoidal corrector. Mon. Wea. Rev., 140, 307–322, doi:10.1175/MWR-D-10-05066.1.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul Jr., and C. Cohen, 2007: The motion of simulated convective storms as a function of basic environmental parameters. Mon. Wea. Rev., 135, 3033–3051, doi:10.1175/MWR3447.1.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul Jr., and C. Cohen, 2009: Variability of updraft and downdraft characteristics in a large parameter space study of convective storms. Mon. Wea. Rev., 137, 1550–1561, doi:10.1175/2008MWR2703.1.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul Jr., and C. Cohen, 2011: Sensitivities of simulated convective storms to environmental CAPE. Mon. Wea. Rev., 139, 3514–3532, doi:10.1175/2011MWR3631.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39, doi:10.1029/GM079p0019.

  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852–876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 3–10, doi:10.1016/j.atmosres.2008.09.015.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 1841–1850, doi:10.1175/MWR-D-15-0439.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. Thompson, 2003a: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1262–1272, doi:10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003b: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795–823, doi:10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, R. P. Davies-Jones, Y. Richardson, and J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 3513–3535, doi:10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887–2915, doi:10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 2916–2938, doi:10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: The maintenance of tornadoes observed with high-resolution mobile radars. Mon. Wea. Rev., 140, 3–27, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 4238–4260, doi:10.1175/2009MWR2959.1.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 51–78, doi:10.1017/S0022112092002271.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408–429, doi:10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664–687, doi:10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 1722–1748, doi:10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133, 3015–3037, doi:10.1175/MWR3015.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052–2062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 2014: Large eddy simulation. Encyclopedia of Atmospheric Sciences, 2nd ed. G. North, F. Zhang, and J. Pyle, Eds., Academic Press, 232–240.

  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783–801, doi:10.1175/WAF-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and P. M. Markowski, 2016: Modifications to the near-storm environment induced by simulated supercell thunderstorms. Mon. Wea. Rev., 144, 273–293, doi:10.1175/MWR-D-15-0247.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2015: Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon. Wea. Rev., 143, 272–297, doi:10.1175/MWR-D-14-00151.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2012: Impacts of lapse rates upon low-level rotation in idealized storms. J. Atmos. Sci., 69, 538–559, doi:10.1175/JAS-D-11-058.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508–529, doi:10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 2795–2816, doi:10.1175/MWR-D-14-00310.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1959: An example of non-linear computational instability. The Atmosphere and the Sea in Motion, Oxford University Press, 501–504.

  • Piomelli, U., J. Ferziger, P. Moin, and J. Kim, 1989: New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids, 1, 1061, doi:10.1063/1.857397.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530–535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson II, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 3371–3395, doi:10.1175/JAS-D-15-0332.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1979: A study in tornado-like vortex dynamics. J. Atmos. Sci., 36, 140–155, doi:10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1980: Vorticity dynamics of a convective swirling boundary layer. J. Fluid Mech., 97, 623–640, doi:10.1017/S0022112080002728.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 3372–3390, doi:10.1175/JAS-D-12-038.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130–154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934–957, doi:10.1175/1520-0469(1975)032<0934:ATDNMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18, 376–404, doi:10.1016/0021-9991(75)90093-5.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1978: Environmental Aerodynamics. Ellis Horwood, 488 pp.

  • Shapiro, R., 1975: Linear filtering. Math. Comput., 29, 1094–1097, doi:10.1090/S0025-5718-1975-0389356-X.

  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/32/34.]

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247–276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. M. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, C., P. Markowski, and Y. Richardson, 2014: What makes the sickle hodograph special? 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 3B.4A. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254562.html.]

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.

  • Wicker, L. J., 2009: A two-step Adams–Bashforth–Moulton split-explicit integrator for compressible atmospheric models. Mon. Wea. Rev., 137, 3588–3595, doi:10.1175/2009MWR2838.1.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466–1483, doi:10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., L. J. Peltier, and S. Khanna, 1998: LES in the surface layer: Surface fluxes, scaling, and SGS modeling. J. Atmos. Sci., 55, 1733–1754, doi:10.1175/1520-0469(1998)055<1733:LITSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2015: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 1963–1986, doi:10.1175/JAS-D-14-0209.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1421 571 65
PDF Downloads 737 138 20