• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, B., , Q. Mo, , R. P. Lawson, , D. O’Connor, , and A. Korolev, 2009: Drop size distributions and the lack of small drops in RICO rain shafts. J. Appl. Meteor. Climatol., 48, 616623, doi:10.1175/2008JAMC1934.1.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , H. Le Treut, , and M. B. Baker, 1995: Precipitation and radiation modelling in a general circulation model: Introduction of cloud microphysical processes. J. Geophys. Res., 100, 16 39516 414, doi:10.1029/95JD01382.

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., , G. A. Isaac, , S. G. Cober, , and Q. Fu, 2004: Liquid fraction in stratiform mixed-phase clouds from in situ observations. Quart. J. Roy. Meteor. Soc., 130, 29192931, doi:10.1256/qj.03.153.

    • Search Google Scholar
    • Export Citation
  • Bower, K., , S. J. Moss, , D. W. Johnson, , T. W. Choularton, , J. Latham, , P. R. A. Brown, , A. M. Blyth, , and J. Cardwell, 1996: A parametrization of ice water content observed in frontal and convective clouds. Quart. J. Roy. Meteor. Soc., 122, 18151844, doi:10.1002/qj.49712253605.

    • Search Google Scholar
    • Export Citation
  • Braga, R. C., , and D. A. Vila, 2014: Investigating the ice water path in convective cloud life cycles to improve passive microwave rainfall retrievals. J. Hydrometeor., 15, 14861497, doi:10.1175/JHM-D-13-0206.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, I., and et al. , 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modeling. Atmos. Chem. Phys., 12, 49634985, doi:10.5194/acp-12-4963-2012.

    • Search Google Scholar
    • Export Citation
  • Czys, R. R., , and M. S. Petersen, 1992: A roughness-detection technique for objectively classifying drops and graupel in 2D-image records. J. Atmos. Oceanic Technol., 9, 242257, doi:10.1175/1520-0426(1992)009<0242:ARDTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and et al. , 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., , L. R. Leung, , and Q. Hu, 1997: Application of cloud microphysics to NCAR community climate model. J. Geophys. Res., 102, 16 50716 527, doi:10.1029/97JD00703.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , L. P. Wang, , and T. V. Prabha, 2015: Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15, 913926, doi:10.5194/acp-15-913-2015.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , and J. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17, 15661572, doi:10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, doi:10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., III, 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, doi:10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and et al. , 2011: Development of ice particles in convective clouds observed over the Black Forest mountains during COPS. Quart. J. Roy. Meteor. Soc., 137, 275286, doi:10.1002/qj.749.

    • Search Google Scholar
    • Export Citation
  • Jones, D. M. A., 1959: The shape of raindrops. J. Meteor., 16, 504510, doi:10.1175/1520-0469(1959)016<0504:TSOR>2.0.CO;2.

  • Khain, A., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • King, W. D., , D. A. Parkin, , and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, doi:10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, doi:10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , J. W. Strapp, , S. G. Cober, , and H. W. Barker, 2007: In situ measurements of liquid water content profiles in midlatitude stratiform clouds. Quart. J. Roy. Meteor. Soc., 133, 16931699, doi:10.1002/qj.147.

    • Search Google Scholar
    • Export Citation
  • Lawson, P. R., , D. O’Connor, , P. Zmarzly, , K. Weaver, , B. A. Baker, , Q. Mo, , and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, P. R., , S. Woods, , and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, doi:10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., , and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, doi:10.1002/qj.49712757208.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., 2006: Cloud phase structure: Experimental data analysis and parameterization. J. Atmos. Sci., 63, 667681, doi:10.1175/JAS3660.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, doi:10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Moss, S. J., , and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model parametrisations of ice to water ratios in clouds. Atmos. Res., 34, 125, doi:10.1016/0169-8095(94)90078-7.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., , D. O’Sullivan, , J. D. Atkinson, , and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., , C. J. Seaman, , T. H. V. Haar, , and G. Liu, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 269279, doi:10.1175/JAMC-D-11-0202.1.

    • Search Google Scholar
    • Export Citation
  • Noone, K. B., , K. J. Noone, , J. Heintzenberg, , J. Ström, , and J. A. Ogren, 1993: In situ observations of cirrus cloud microphysical properties using the counterflow virtual impactor. J. Atmos. Oceanic Technol., 10, 294303, doi:10.1175/1520-0426(1993)010<0294:ISOOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., , J. A. Ogren, , J. Heintzenberg, , R. J. Charlson, , and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1971: Some aspects of the natural glaciation process in relatively warm maritime clouds. J. Meteor. Soc. Japan, 49, 845858.

  • Rangno, A. L., , and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117, 207241, doi:10.1002/qj.49711749710.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., , and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, 15 06515 075, doi:10.1029/2000JD900286.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., , and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673, doi:10.1256/qj.04.13.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983, doi:10.1175/1520-0469(1992)049<1968:EOTSMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282, doi:10.1002/qj.49712354106.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , S. Y. Matrosov, , and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., , J. E. Dye, , A. Bansemer, , A. J. Heymsfield, , C. A. Grainger, , W. A. Petersen, , and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., , J. A. Haggerty, , A. Heymsfield, , and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., , P. Chow, , M. Maltby, , A. D. Bezer, , A. Korolev, , I. Stromberg, , and J. Hallett, 1999: Cloud microphysical measurements in thunderstorm outflow regions during Allied/BAE 1997 flight trials. Proc. 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, 10 pp., doi:10.2514/6.1999-498.

  • Sun, Z., , and K. P. Shine, 1994: Studies of radiative properties of ice and mixed phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137, doi:10.1002/qj.49712051508.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and et al. , 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, doi:10.5194/acp-16-799-2016.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , A. J. Schanot, , and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, doi:10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J. J., , X. Li, , and L. D. Carey, 2007: Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360380, doi:10.1175/JAS3852.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , C. N. Long, , L. R. Leung, , J. Dudhia, , S. A. McFarlane, , J. H. Mather, , S. J. Ghan, , and X. Liu, 2009: Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006. J. Geophys. Res., 114, D21203, doi:10.1029/2009JD012729.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , K. Sassen, , D. N. Whiteman, , and B. B. Demoz, 2004: Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43, 449460, doi:10.1175/1520-0450(2004)043<0449:SAWIVU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , P. Wechsler, , W. Kuestner, , J. French, , A. Rodi, , B. Glover, , M. Burkhart, , and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and et al. , 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and et al. , 2014: Observed strong ice generation at temperatures warmer than −8 °C and potential contribution of biological ice nuclei. 14th Conf. on Cloud Physics, Boston, MA, Amer. Meteor. Soc., 78. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250911.html.]

  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7A, 449457, doi:10.1111/j.2153-3490.1955.tb01183.x.

  • Warner, J., , and P. Squires, 1958: Liquid water content and the adiabatic model of cumulus development. Tellus, 10A, 390394, doi:10.1111/j.2153-3490.1958.tb02026.x.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , Z. Wang, , A. Heymsfield, , and J. French, 2016: Characteristics of vertical air motion in isolated convective clouds. Atmos. Chem. Phys., 16, 10 15910 173, doi:10.5194/acp-16-10159-2016.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., , S. E. Yuter, , R. A. Houze, , and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, doi:10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., , Z. Wang, , and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115, D00H13, doi:10.1029/2009JD012143.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2011: The Arctic clouds from model simulations and long-term observations at Barrow, Alaska. Ph.D. dissertation, University of Wyoming, 178 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 9
PDF Downloads 35 35 6

Liquid–Ice Mass Partition in Tropical Maritime Convective Clouds

View More View Less
  • 1 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

The liquid–ice mass partitioning in tropical maritime convective clouds is studied using data collected by the National Center for Atmospheric Research C-130 research aircraft during the Ice in Clouds Experiment–Tropical project. The clouds investigated by the C-130 in this study generally contained weak to moderate updrafts. The liquid water content (LWC) is calculated using a combination of hot-wire and imaging probes. The total condensed water content (CWC) is measured by a counterflow virtual impactor. The ice water content (IWC) is calculated as CWC minus LWC. Taking into account potential significant measurement uncertainties, the liquid fraction [i.e., LWC/(LWC + IWC)] between 0° and −15°C appears to decrease by a factor of about 3 in updrafts near (<500 m) cloud top and a factor of 2 in updrafts far below (>500 m) cloud top. The decrease in liquid fraction as a function of temperature is also correlated with cloud life cycle. In dissipating clouds, ice dominates in all temperature ranges. A comparison between this study and two parameterizations shows that at different geographic locations the liquid fraction in convective clouds differs. Because of the sampling bias and the limitations of instruments, more measurements, especially with more advanced instruments, are needed in the future.

Corresponding author address: Zhien Wang, Department of Atmospheric Science, University of Wyoming, EN 6034, Dept. 3038, 1000 E. University Ave., Laramie WY 82071. E-mail: zwang@uwyo.edu

Abstract

The liquid–ice mass partitioning in tropical maritime convective clouds is studied using data collected by the National Center for Atmospheric Research C-130 research aircraft during the Ice in Clouds Experiment–Tropical project. The clouds investigated by the C-130 in this study generally contained weak to moderate updrafts. The liquid water content (LWC) is calculated using a combination of hot-wire and imaging probes. The total condensed water content (CWC) is measured by a counterflow virtual impactor. The ice water content (IWC) is calculated as CWC minus LWC. Taking into account potential significant measurement uncertainties, the liquid fraction [i.e., LWC/(LWC + IWC)] between 0° and −15°C appears to decrease by a factor of about 3 in updrafts near (<500 m) cloud top and a factor of 2 in updrafts far below (>500 m) cloud top. The decrease in liquid fraction as a function of temperature is also correlated with cloud life cycle. In dissipating clouds, ice dominates in all temperature ranges. A comparison between this study and two parameterizations shows that at different geographic locations the liquid fraction in convective clouds differs. Because of the sampling bias and the limitations of instruments, more measurements, especially with more advanced instruments, are needed in the future.

Corresponding author address: Zhien Wang, Department of Atmospheric Science, University of Wyoming, EN 6034, Dept. 3038, 1000 E. University Ave., Laramie WY 82071. E-mail: zwang@uwyo.edu
Save