• Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, doi:10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, doi:10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, doi:10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, C. J., and R. A. Plumb, 2009: The response to stratospheric forcing and its dependence on the state of the troposphere. J. Atmos. Sci., 66, 21072115, doi:10.1175/2009JAS2937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and A. O’Neill, 2010: On the sensitivity of annular mode dynamics to stratospheric radiative time scales. J. Climate, 23, 476484, doi:10.1175/2009JCLI2995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coughlin, K., and L. J. Gray, 2009: A continuum of sudden stratospheric warmings. J. Atmos. Sci., 66, 531540, doi:10.1175/2008JAS2792.1.

  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, doi:10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, doi:10.1002/2014JD022116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, Jr., H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and N. J. Matthewman, 2011: Stratospheric sudden warmings as self-tuning resonances. Part II: Vortex displacement events. J. Atmos. Sci., 68, 25052523, doi:10.1175/JAS-D-11-08.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, doi:10.1175/2008JCLI2548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., L. M. Polvani, and D. Ancukiewicz, 2008a: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, doi:10.1029/2008GL035712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. M. Polvani, 2008b: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, doi:10.1175/2007MWR2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., C. Orbe, and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801, doi:10.1029/2009GL040913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómez-Escolar, M., N. Calvo, D. Barriopedro, and S. Fueglistaler, 2014: Tropical response to stratospheric sudden warmings and its modulation by the QBO. J. Geophys. Res. Atmos., 119, 73827395, doi:10.1002/2013JD020560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, doi:10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, M. Taguchi, S. Yoden, and S. Noguchi, 2013: Lower-stratospheric radiative damping and polar-night jet oscillation events. J. Atmos. Sci., 70, 13911408, doi:10.1175/JAS-D-12-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jucker, M., 2014: Scientific visualisation of atmospheric data with ParaView. J. Open Res. Software, 2, e4e7, doi:10.5334/jors.al.

  • Jucker, M., 2015a: JFV-strat: An idealized General Circulation Model for stratosphere-troposphere coupling. Zenodo, doi:10.5281/zenodo.18125.

    • Crossref
    • Export Citation
  • Jucker, M., 2015b: pv_atmos v2.3. Zenodo, doi:10.5281/zenodo.31252.

    • Crossref
    • Export Citation
  • Jucker, M., 2015c: SSW runs. Figshare, doi:10.6084/m9.figshare.1314312.v1.

    • Crossref
    • Export Citation
  • Jucker, M., 2016a: 3D Interactive Generic Sudden Stratospheric Warming composite. Zenodo, doi:10.5281/zenodo.46174.

    • Crossref
    • Export Citation
  • Jucker, M., 2016b: aostools v1.1. Zendo, doi:10.5281/zenodo.56501.

    • Crossref
    • Export Citation
  • Jucker, M., 2016c: Data and scripts to “Are sudden stratospheric warmings generic? Insights from an idealized GCM,” Journal of the Atmospheric Sciences (2016). Mendeley Data, doi:10.17632/pbf8tvprfk.1.

    • Crossref
    • Export Citation
  • Jucker, M., S. Fueglistaler, and G. K. Vallis, 2013: Maintenance of the stratospheric structure in an idealized general circulation model. J. Atmos. Sci., 70, 33413358, doi:10.1175/JAS-D-12-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jucker, M., S. Fueglistaler, and G. K. Vallis, 2014: Stratospheric sudden warmings in an idealized GCM. J. Geophys. Res. Atmos., 119, 11 05411 064, doi:10.1002/2014JD022170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, doi:10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., 2006: Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett., 33, L06804, doi:10.1029/2005GL024510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., 2008: Role of the stratosphere on the predictability of medium-range weather forecast: A case study of winter 2003–2004. Geophys. Res. Lett., 35, L19701, doi:10.1029/2008GL034902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2005: A very large, spontaneous stratospheric sudden warming in a simple AGCM: A prototype for the Southern Hemisphere warming of 2002? J. Atmos. Sci., 62, 890897, doi:10.1175/JAS-3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1981: Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res., 86, 96659678, doi:10.1029/JC086iC10p09665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and J. G. Esler, 2011: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 24812504, doi:10.1175/JAS-D-11-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765.

  • Mitchell, D. M., A. J. Charlton-Perez, and L. J. Gray, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68, 11941213, doi:10.1175/2010JAS3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, doi:10.1029/2005GL024784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmeiro, F. M., D. Barriopedro, R. García-Herrera, and N. Calvo, 2015: Comparing sudden stratospheric warming definitions in reanalysis data. J. Climate, 28, 68236840, doi:10.1175/JCLI-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 4043, doi:10.1029/2001GL014284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichler, T., P. J. Kushner, and L. M. Polvani, 2005: The coupled stratosphere–troposphere response to impulsive forcing from the troposphere. J. Atmos. Sci., 62, 33373352, doi:10.1175/JAS3527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626, doi:10.1175/JAS4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., 1978: Stratospheric warmings: Observations and theory. Rev. Geophys., 16, 521538, doi:10.1029/RG016i004p00521.

  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, doi:10.1002/grl.50927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos., 121, 14001413, doi:10.1002/2015JD024178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, doi:10.1175/2008JAS2758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2016: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry. Atmos. Sci. Lett., 17, 3338, doi:10.1002/asl.595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, doi:10.1088/1748-9326/10/10/104007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, doi:10.1029/2009JD012742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., T. Yamaga, S. Pawson, and U. Langematz, 1999: A composite analysis of the stratospheric sudden warmings simulated in a perpetual January integration of the Berlin TSM GCM. J. Meteor. Soc. Japan, 77, 431445.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 17
PDF Downloads 61 61 14

Are Sudden Stratospheric Warmings Generic? Insights from an Idealized GCM

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

This work examines the life cycle of sudden stratospheric warmings (SSWs) from composites of a large number of events. The events are sampled from idealized general circulation model (GCM) integrations and form a database of several hundred major, displacement, splitting, and weak vortex events. It is shown that except for a few details, the generic zonal-mean evolution does not depend on the definition used to detect SSWs. In all cases, the composites show the stratosphere in a positive annular mode phase prior to the events and a barotropic response in the stratosphere at onset. There is a clear positive peak in upward Eliassen–Palm (EP) flux prior to the onset date in the stratosphere and a much weaker peak in the troposphere, making the evolution more consistent with the picture of the stratosphere acting as a variable filter of tropospheric EP flux, rather than SSWs being forced by a strong “burst” in the troposphere. When comparing composites of SSWs from the database with apparent influence at the surface (downward “propagating”) to those without such influence, the only significant differences are a somewhat more barotropic response at the onset date and longer persistence in the lower stratosphere after the onset for propagating SSWs. There is no significant difference in EP flux between propagating and nonpropagating events, and none of the definitions considered here shows a particular skill in selecting propagating events.

Current affiliation: University of Melbourne, Melbourne, Victoria, Australia.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Martin Jucker, School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, McCoy Building, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: publications@martinjucker.com

Abstract

This work examines the life cycle of sudden stratospheric warmings (SSWs) from composites of a large number of events. The events are sampled from idealized general circulation model (GCM) integrations and form a database of several hundred major, displacement, splitting, and weak vortex events. It is shown that except for a few details, the generic zonal-mean evolution does not depend on the definition used to detect SSWs. In all cases, the composites show the stratosphere in a positive annular mode phase prior to the events and a barotropic response in the stratosphere at onset. There is a clear positive peak in upward Eliassen–Palm (EP) flux prior to the onset date in the stratosphere and a much weaker peak in the troposphere, making the evolution more consistent with the picture of the stratosphere acting as a variable filter of tropospheric EP flux, rather than SSWs being forced by a strong “burst” in the troposphere. When comparing composites of SSWs from the database with apparent influence at the surface (downward “propagating”) to those without such influence, the only significant differences are a somewhat more barotropic response at the onset date and longer persistence in the lower stratosphere after the onset for propagating SSWs. There is no significant difference in EP flux between propagating and nonpropagating events, and none of the definitions considered here shows a particular skill in selecting propagating events.

Current affiliation: University of Melbourne, Melbourne, Victoria, Australia.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Martin Jucker, School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, McCoy Building, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: publications@martinjucker.com
Save