• Adrian, R. J., 2007: Hairpin vortex organization in wall turbulence. Phys. Fluids, 19, 041301, doi:10.1063/1.2717527.

  • Arroues, K. D., and J. C. H. Anderson, 1986: Soil survey of Kings County California. Tech. Rep. 1986-479-188/40018, U.S. Government Printing Office, 212 pp. [Available online at http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/california/CA031/0/kings.pdf.]

  • Bagnold, R. A., 1954: The Physics of Blown Sand and Desert Dunes. Methuen, 265 pp.

  • Balme, M. R., P. L. Whelley, and R. Greeley, 2003: Mars: Dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res., 108, 5086, doi:10.1029/2003JE002096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: Doppler radar observations of dust devils in Texas. Mon. Wea. Rev., 132, 209224, doi:10.1175/1520-0493(2004)132<0209:DROODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, J. J., and J. A. Ryan, 1970: Atmospheric vorticity and dust devil rotation. J. Geophys. Res., 75, 51795184, doi:10.1029/JC075i027p05179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danes, R., 1901: Cassell’s History of the Boer War, 1899–1901. Cassell, 224 pp.

  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., Vol. 2, Thunderstorms: A Social, Scientific, and Technological Documentary, University of Oklahoma Press, 197–236.

  • Fitzjarrald, D. E., 1973: A field investigation of dust devils. J. Appl. Meteor., 12, 808813, doi:10.1175/1520-0450(1973)012<0808:AFIODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405436, doi:10.1111/j.2153-3490.1955.tb01181.x.

  • Garai, A., E. Pardyjak, G. J. Steenveld, and J. Kleissl, 2013: Surface temperature and surface-layer turbulence in a convective boundary layer. Bound.-Layer Meteor., 148, 5172, doi:10.1007/s10546-013-9803-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/.]

  • Gu, Z., Y. Zhao, Y. Li, Y. Yu, and X. Feng, 2006: Numerical simulation of dust lifting within dust devils—Simulation of an intense vortex. J. Atmos. Sci., 63, 26302641, doi:10.1175/JAS3748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horst, T. W., J. Kleissl, D. H. Lenschow, C. Meneveau, C.-H. Moeng, M. B. Parlange, P. P. Sullivan, and J. C. Weil, 2004: HATS: Field observations to obtain spatially filtered turbulence fields from crosswind arrays of sonic anemometers in the atmospheric surface layer. J. Atmos. Sci., 61, 15661581, doi:10.1175/1520-0469(2004)061<1566:HFOTOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, N., K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, 2012: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteor., 145, 273306, doi:10.1007/s10546-012-9735-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iversen, J. D., R. Greeley, and J. B. Pollack, 1976: Windblown dust on Earth, Mars and Venus. J. Atmos. Sci., 33, 24252429, doi:10.1175/1520-0469(1976)033<2425:WDOEMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ives, R. L., 1947: Behavior of dust devils. Bull. Amer. Meteor. Soc., 28, 168174.

  • Kaimal, J. C., and J. A. Businger, 1970: Case studies of a convective plume and a dust devil. J. Appl. Meteor., 9, 612620, doi:10.1175/1520-0450(1970)009<0612:CSOACP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., 2005: Numerical simulations of dust devil–scale vortices. Quart. J. Roy. Meteor. Soc., 131, 12711292, doi:10.1256/qj.03.172.

  • Kelly, M., J. C. Wyngaard, and P. P. Sullivan, 2009: Application of a subfilter-scale flux model over the ocean using OHATS field data. J. Atmos. Sci., 66, 32173235, doi:10.1175/2009JAS2903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, doi:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, J., and N. O. Renno, 2005: The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett., 32, L18806, doi:10.1029/2005GL023420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurgansky, M. V., A. Montecinos, V. Villagran, and S. M. Metzger, 2011: Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteor., 138, 285298, doi:10.1007/s10546-010-9549-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, doi:10.1175/JAS3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 18791898, doi:10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, K. X., T. W. Horst, S. P. Oncley, and C. Tong, 2013: Measurements of the budgets of the subgrid-scale stress and temperature flux in a convective atmospheric surface layer. J. Fluid Mech., 729, 388422, doi:10.1017/jfm.2013.302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and et al. , 2011: The Canopy Horizontal Array Turbulence Study. Bull. Amer. Meteor. Soc., 92, 593611, doi:10.1175/2010BAMS2614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and T. Franke, 2011: Structure and formation of dust devil–like vortices in the atmospheric boundary layer: A high-resolution numerical study. J. Geophys. Res., 116, D16120, doi:10.1029/2011JD016010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, P. C., 1964: Some preliminary dust devil measurements. Mon. Wea. Rev., 92, 363367, doi:10.1175/1520-0493(1964)092<0363:SPDDM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, P. C., 1969: General characteristics of dust devils. J. Appl. Meteor., 8, 3245, doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and L. M. Leslie, 1976: Thermally driven vortices: A numerical study with application to dust-devil dynamics. Quart. J. Roy. Meteor. Soc., 102, 791804, doi:10.1002/qj.49710243409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476, doi:10.1098/rspa.1938.0032.

  • Tong, C., J. C. Wyngaard, S. Khanna, and J. G. Brasseur, 1998: Resolvable- and subgrid-scale measurement in the atmospheric surface layer: Technique and issues. J. Atmos. Sci., 55, 31143126, doi:10.1175/1520-0469(1998)055<3114:RASSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tratt, D. M., M. H. Hecht, D. C. Catling, E. C. Samulon, and P. H. Smith, 2003: In situ measurement of dust devil dynamics: Toward a strategy for Mars. J. Geophys. Res., 108, 5116, doi:10.1029/2003JE002161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. E. Tillman, 1980: The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci., 37, 24242443, doi:10.1175/1520-0469(1980)037<2424:TTDSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1979: Laboratory observation of turbulent penetrative-convection planforms. J. Geophys. Res., 84, 295302, doi:10.1029/JC084iC01p00295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505, doi:10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 10
PDF Downloads 38 38 8

Whirlwinds and Hairpins in the Atmospheric Surface Layer

View More View Less
  • 1 Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices appear to have been observed. The structure and dynamics of several types of vortices are described and related to other vortex investigations, including tornadoes and hurricanes.

Current affiliation: Wageningen University, Wageningen, Netherlands.

Current affiliation: Department of Mechanical Engineering, Clemson University, Clemson, South Carolina.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Steven P. Oncley, oncley@ucar.edu

Abstract

Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices appear to have been observed. The structure and dynamics of several types of vortices are described and related to other vortex investigations, including tornadoes and hurricanes.

Current affiliation: Wageningen University, Wageningen, Netherlands.

Current affiliation: Department of Mechanical Engineering, Clemson University, Clemson, South Carolina.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Steven P. Oncley, oncley@ucar.edu
Save