• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., , A. Seifert, , J. Forstner, , D. Majewski, , and M. Raschendorfer, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bangert, M., , C. Kottmeier, , B. Vogel, , and H. Vogel, 2011: Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model. Atmos. Chem. Phys., 11, 44114423, doi:10.5194/acp-11-4411-2011.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation. Procès-Verbaux des Séances de L’Association de Météorologie: Cinquième Assemblée Générale, Vol. II, International Union of Geodesy and Geophysics, 156–178.

  • Borys, R. D., , D. H. Lowenthal, , S. A. Cohen, , and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–658, doi:10.1017/CBO9781107415324.016.

  • Duong, H. T., , A. Sorooshian, , and G. Feingold, 2011: Investigating potential biases in observed and modeled metrics of aerosol–cloud–precipitation interactions. Atmos. Chem. Phys., 11, 40274037, doi:10.5194/acp-11-4027-2011.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , and H. Siebert, 2009: Cloud–aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 319–338, doi:10.7551/mitpress/9780262012874.003.0014.

  • Feingold, G., , A. McComiskey, , D. Rosenfeld, , and A. Sorooshian, 2013: On the relationship between cloud contact time and precipitation susceptibility to aerosol. J. Geophys. Res. Atmos., 118, 10 54410 554, doi:10.1002/jgrd.50819.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121–133.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , H. Morrison, , C. R. Terai, , and R. Wood, 2013: Microphysical process rates and global aerosol–cloud interactions. Atmos. Chem. Phys., 13, 98559867, doi:10.5194/acp-13-9855-2013.

    • Search Google Scholar
    • Export Citation
  • Glassmeier, F., 2016: Constraining susceptibilities of aerosol–cloud–precipitation interactions in warm and cold clouds. Ph.D. thesis, ETH Zürich, 126 pp., doi:10.3929/ethz-a-010614474.

  • Heymsfield, A. J., , G. Thompson, , H. Morrison, , A. Bansemer, , R. M. Rasmussen, , P. Minnis, , and Z. W. D. Zhang, 2011: Formation and spread of aircraft-induced holes in clouds. Science, 333, 7781, doi:10.1126/science.1202851.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., , B. J. Shipway, , and I. A. Boutle, 2015: How sensitive are aerosol–precipitation interactions to the warm rain response? J. Adv. Model. Earth Syst., 7, 9871004, doi:10.1002/2014MS000422.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , and A. Sorooshian, 2010: Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. J. Atmos. Sci., 67, 35253540, doi:10.1175/2010JAS3484.1.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108, 4402, doi:10.1029/2002JD003220.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Search Google Scholar
    • Export Citation
  • Krämer, M., and et al. , 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Search Google Scholar
    • Export Citation
  • Kuebbeler, M., , U. Lohmann, , J. Hendricks, , and B. Kärcher, 2014: Dust ice nuclei effect on cirrus clouds. Atmos. Chem. Phys., 14, 30273046, doi:10.5194/acp-14-3027-2014.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., , and G. Feingold, 2014: On the relations between responses in cloud water and precipitation to changes in aerosol. Atmos. Chem. Phys., 14, 11 81711 831, doi:10.5194/acp-14-11817-2014.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2004: Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci., 61, 24572468, doi:10.1175/1520-0469(2004)061<2457:CAADTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, doi:10.5194/acp-9-8917-2009.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., , and M. J. Manton, 1974: On the evolution of the collection kernel for the coalescence of water droplets. J. Atmos. Sci., 31, 10531057, doi:10.1175/1520-0469(1974)031<1053:OTEOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., , A. Sorooshian, , H. H. Jonsson, , G. Feingold, , R. C. Flagan, , and J. H. Seinfeld, 2009: Marine stratocumulus aerosol–cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. J. Geophys. Res., 114, D24203, doi:10.1029/2009JD012774.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., , and G. Feingold, 2012: The scale problem in quantifying aerosol cloud indirect effects. Atmos. Chem. Phys., 12, 10311049, doi:10.5194/acp-12-1031-2012.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and W. Finnegan, 2009: Modification of cirrus clouds to reduce global warming. Environ. Res. Lett., 4, 045102, doi:10.1088/1748-9326/4/4/045102.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., , T. Hashino, , L. Xue, , A. Teller, , U. Lohmann, , R. M. Rasmussen, , I. Geresdi, , and Z. Pan, 2010: Intercomparison of aerosol–cloud–precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 81738196, doi:10.5194/acp-10-8173-2010.

    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., , O. Sourdeval, , J. Dalanoë, , and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, doi:10.1002/2015GL064604.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and et al. , 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 659–740, doi:10.1017/CBO9781107415324.018.

  • Noppel, H., , U. Blahak, , A. Seifert, , and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286301, doi:10.1016/j.atmosres.2009.09.008.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., , C. Zhou, , and X. Liu, 2015: Can cirrus cloud seeding be used for geoengineering? Geophys. Res. Lett., 42, 87758782, doi:10.1002/2015GL065992.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, doi:10.1175/2007JAMC1664.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2013: Aerosol impacts on the microphysical growth processes in orographic snowfall. J. Appl. Meteor. Climatol., 52, 834852, doi:10.1175/JAMC-D-12-0193.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , W. R. Cotton, , D. Lowenthal, , R. D. Borys, , and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922, doi:10.1175/2008JAMC1989.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , W. R. Cotton, , and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625, doi:10.1175/2010JAMC2594.1.

    • Search Google Scholar
    • Export Citation
  • Sant, V., , R. Posselt, , and U. Lohmann, 2015: Prognostic precipitation with three liquid water classes in the ECHAM5–HAM GCM. Atmos. Chem. Phys., 15, 87178738, doi:10.5194/acp-15-8717-2015.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281, doi:10.1016/S0169-8095(01)00126-0.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , C. Köhler, , and K. D. Beheng, 2012: Aerosol–cloud–precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, doi:10.5194/acp-12-709-2012.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , S. Bony, , O. Boucher, , C. Bretherton, , P. M. Forster, , J. M. Gregory, , and B. Stevens, 2015: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, doi:10.1175/BAMS-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., , G. Feingold, , M. D. Lebsock, , H. Jiang, , and G. L. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143163, doi:10.2151/jmsj.86A.143.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stjern, C. W., , and J. E. Kristjánsson, 2015: Contrasting influences of recent aerosol changes on clouds and precipitation in Europe and East Asia. J. Climate, 28, 87708790, doi:10.1175/JCLI-D-14-00837.1.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., , and N. Herger, 2014: Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere. J. Geophys. Res. Atmos., 119, 23752389, doi:10.1002/2013JD020816.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., , J. E. Kristjánsson, , U. Lohmann, , T. Iversen, , A. Kirkevag, , and O. Seland, 2008: Modeling of the Wegener–Bergeron–Findeisen process—Implications for aerosol indirect effects. Environ. Res. Lett., 3, 045001, doi:10.1088/1748-9326/3/4/045001.

    • Search Google Scholar
    • Export Citation
  • Terai, C. R., , R. Wood, , D. C. Leon, , and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, doi:10.5194/acp-12-4567-2012.

    • Search Google Scholar
    • Export Citation
  • Terai, C. R., , R. Wood, , and T. L. Kubar, 2015: Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds. J. Geophys. Res. Atmos., 120, 88788889, doi:10.1002/2015JD023319.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Wegener, A., 1911: Thermodynamik der Atmosphäre. Johann Ambrosius Barth, 331 pp.

  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050, doi:10.1175/JAS3530.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , T. L. Kubar, , and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, doi:10.1175/2009JAS3072.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 12
PDF Downloads 69 69 18

Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

The strength of the effective anthropogenic climate forcing from aerosol–cloud interactions is related to the susceptibility of precipitation to aerosol effects. Precipitation susceptibility d lnP/d lnN has been proposed as a metric to quantify the effect of aerosol-induced changes in cloud droplet number N on warm precipitation rate P. Based on the microphysical rate equations of the Seifert and Beheng two-moment bulk microphysics scheme, susceptibilities of warm-, mixed-, and ice-phase precipitation and cirrus sedimentation to cloud droplet and ice crystal number are estimated. The estimation accounts for microphysical adjustments to the initial perturbation in N. For warm rain, d lnP/d lnN < −2aut/(aut + acc) is found, which depends on the rates of autoconversion (aut) and accretion (acc). Cirrus sedimentation susceptibility corresponds to the exponent of crystal sedimentation velocity with a value of −0.2. For mixed-phase clouds, several microphysical contributions that explain low precipitation susceptibilities are identified: (i) Because of the larger hydrometeor sizes involved, mixed-phase collection processes are less sensitive to changes in hydrometeor size than autoconversion. (ii) Only a subset of precipitation formation processes is sensitive to droplet or crystal number. (iii) Effects on collection processes and diffusional growth compensate. (iv) Adjustments in cloud liquid and ice amount compensate the effect of changes in ice crystal and cloud droplet number. (v) Aerosol perturbations that simultaneously affect ice crystal and droplet number have opposing effects.

Denotes Open Access content.

Current affiliation: Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Franziska Glassmeier, Chemical Sciences Division, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: franziska.glassmeier@noaa.gov

Abstract

The strength of the effective anthropogenic climate forcing from aerosol–cloud interactions is related to the susceptibility of precipitation to aerosol effects. Precipitation susceptibility d lnP/d lnN has been proposed as a metric to quantify the effect of aerosol-induced changes in cloud droplet number N on warm precipitation rate P. Based on the microphysical rate equations of the Seifert and Beheng two-moment bulk microphysics scheme, susceptibilities of warm-, mixed-, and ice-phase precipitation and cirrus sedimentation to cloud droplet and ice crystal number are estimated. The estimation accounts for microphysical adjustments to the initial perturbation in N. For warm rain, d lnP/d lnN < −2aut/(aut + acc) is found, which depends on the rates of autoconversion (aut) and accretion (acc). Cirrus sedimentation susceptibility corresponds to the exponent of crystal sedimentation velocity with a value of −0.2. For mixed-phase clouds, several microphysical contributions that explain low precipitation susceptibilities are identified: (i) Because of the larger hydrometeor sizes involved, mixed-phase collection processes are less sensitive to changes in hydrometeor size than autoconversion. (ii) Only a subset of precipitation formation processes is sensitive to droplet or crystal number. (iii) Effects on collection processes and diffusional growth compensate. (iv) Adjustments in cloud liquid and ice amount compensate the effect of changes in ice crystal and cloud droplet number. (v) Aerosol perturbations that simultaneously affect ice crystal and droplet number have opposing effects.

Denotes Open Access content.

Current affiliation: Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Franziska Glassmeier, Chemical Sciences Division, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: franziska.glassmeier@noaa.gov
Save