• Abarca, S. F., , K. L. Corbosiero, , and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , S. E. Yuter, , C. D. Burleyson, , and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., , and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317, doi:10.1002/qj.389.

    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., , B. N. Goswami, , A. K. Sahai, , and K. Fraedrich, 2009: Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J. Geophys. Res., 114, D19114, doi:10.1029/2009JD011869.

    • Search Google Scholar
    • Export Citation
  • Choudhury, A. D., , and R. Krishnan, 2011: Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, doi:10.1175/2011JAS3705.1.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and et al. , 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • CloudSat, 2007: 2B-GEOPROF P_R04. CloudSat Data Processing Center. Subset used: 2007–10, accessed 25 October 2014. [Available online at http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-geoprof?term=42.]

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. European Centre for Medium-Range Weather Forecasts. Daily archive, accessed 6 November 2013. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/.]

  • Goswami, B. B., , P. Mukhopadhyay, , R. Mahanta, , and B. N. Goswami, 2010: Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J. Geophys. Res., 115, D12114, doi:10.1029/2009JD012275.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., , and D. R. Durran, 1984: Interaction of low-level flow with the Western Ghat Mountains and offshore convection in the summer monsoon. Mon. Wea. Rev., 112, 652672, doi:10.1175/1520-0493(1984)112<0652:IOLLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 46, 28382862, doi:10.1175/1520-0469(1989)046<2838:IPIIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hatsuzuka, D., , T. Yasunari, , and H. Fujinami, 2014: Characteristics of low pressure systems associated with intraseasonal oscillation of rainfall over Bangladesh during boreal summer. Mon. Wea. Rev., 142, 47584774, doi:10.1175/MWR-D-13-00307.1.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., , and K. Nakamura, 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110, D05106, doi:10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier, 432 pp.

  • Houze, R. A., Jr., , and D. D. Churchill, 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44, 18451867, doi:10.1175/1520-0469(1987)044<1845:MOACMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , D. C. Wilton, , and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, Oxford Monogr. Geol. Geophys., No. 7, Oxford University Press, 297–353.

  • Kikuchi, K., , B. Wang, , and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., , A. Ohta, , M. Katsumata, , S. Mori, , S. Satoh, , and H. Ueda, 2005: Seasonal transition of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett., 32, L14710, doi:10.1029/2005GL022986.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., , and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, doi:10.1175/JCLI3981.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and et al. , 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059,1593:TBSIOR.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, doi:10.1063/1.3463626.

  • Lee, J.-Y., , B. Wang, , M. C. Wheeler, , X. Fu, , D. E. Waliser, , and I.-S. Kang, 2013a: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., , B. Wang, , M. C. Wheeler, , X. Fu, , D. E. Waliser, , and I.-S. Kang, 2013b: Boreal summer intraseasonal oscillation index. Accessed 15 August 2014. [Available online at http://iprc.soest.hawaii.edu/users/jylee/bsiso/.]

  • Liu, C., , M. W. Moncrieff, , and J. D. Tuttle, 2008: A note on propagating rainfall episodes over the Bay of Bengal. Quart. J. Roy. Meteor. Soc., 134, 787792, doi:10.1002/qj.246.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , G. G. Mace, , T. Ackerman, , and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , R. A. Houze Jr., , A. Kumar, , and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, doi:10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Qie, X., , X. Wu, , T. Yuan, , J. Bian, , and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, doi:10.1175/JCLI-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , S. Gadgil, , and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , P. Rohini, , K. Niranjan Kumar, , J. Srinivasan, , and C. K. Unnikrishnan, 2013: A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Climate Dyn., 40, 637650, doi:10.1007/s00382-012-1374-4.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. International Geophysics Series, Vol. 15, Academic Press, 296 pp.

  • Rodger, C. J., , J. B. Brundell, , R. H. Holzworth, , E. H. Lay, , N. B. Crosby, , T.-Y. Huang, , and M. J. Rycroft, 2009: Growing detection efficiency of the World Wide Lightning Location Network. AIP Conf. Proc., 1118, 1520, doi:10.1063/1.3137706.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , and R. A. Houze Jr., 2011a: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , and R. A. Houze Jr., 2011b: Characteristics of precipitating convective systems in the premonsoon season of South Asia. J. Hydrometeor., 12, 157180, doi:10.1175/2010JHM1311.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , S. Medina, , and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., , and D. T. Shea, 2013: Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 2344–2348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Sato, T., 2013: Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the diurnal cycle. Mon. Wea. Rev., 141, 24512466, doi:10.1175/MWR-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1978: CISK-barotropic-baroclinic instability and the growth of monsoon depressions. J. Atmos. Sci., 35, 495508, doi:10.1175/1520-0469(1978)035<0495:CBBIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, R. P., 2014: The dominant intraseasonal mode of intraseasonal South Asian summer monsoon. J. Geophys. Res. Atmos., 119, 635651, doi:10.1002/2013JD020335.

    • Search Google Scholar
    • Export Citation
  • Singh, S. V., , and R. H. Kripalani, 1986: Application of extended empirical orthogonal function analysis to interrelationships and sequential evolution of monsoon fields. Mon. Wea. Rev., 114, 16031610, doi:10.1175/1520-0493(1986)114<1603:AOEEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, J., , S. Gadgil, , and P. J. Webster, 1993: Meridional propagation of large-scale monsoon convective zones. Meteor. Atmos. Phys., 52, 1535, doi:10.1007/BF01025750.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Vellore, R. K., , R. Krishnan, , J. Pendharkar, , A. D. Choudhury, , and T. P. Sabin, 2014: On the anomalous precipitation enhancement over the Himalayan foothills during monsoon breaks. Climate Dyn., 43, 20092031, doi:10.1007/s00382-013-2024-1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and R. A. Houze Jr., 2015a: Variation of lightning and convective rain fraction in mesoscale convective systems of the MJO. J. Atmos. Sci., 72, 19321944, doi:10.1175/JAS-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and R. A. Houze Jr., 2015b: Clouds and water vapor in the tropical tropopause transition layer over mesoscale convective systems. J. Atmos. Sci., 72, 47394753, doi:10.1175/JAS-D-15-0122.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and L. C. Chou, 1980: Low-frequency transitions of a simple monsoon system. J. Atmos. Sci., 37, 368382, doi:10.1175/1520-0469(1980)037<0368:LFTOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , L. Chou, , and K. M. Lau, 1977: Mechanisms effecting the state, evolution and transition of the planetary scale monsoon. Pure Appl. Geophys. (PAGEOPH), 115, 14631492, doi:10.1007/BF00874419.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magaña, , T. N. Palmer, , J. Shukla, , R. A. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., , C. D. Kummerow, , and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214, doi:10.1109/TGRS.2002.808312.

    • Search Google Scholar
    • Export Citation
  • Williams, M., , and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, doi:10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., , and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, doi:10.1175/2010JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., , R. A. Houze Jr., , and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, doi:10.1175/2011JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., , and X. Qie, 2008: Study on lightning and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J. Geophys. Res., 113, D14101, doi:10.1029/2007JD009382.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, doi:10.1002/qj.49712454504.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. of Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851, doi:10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131, 780798, doi:10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 20
PDF Downloads 97 97 26

Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Atmospheric Sciences, University of Washington, Seattle, and Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Premonsoon (April–May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June–September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do premonsoon MCSs.

During the monsoon, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30–60-day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeastward over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0022.s1.

Current affiliation: NASA Marshall Space Flight Center, Huntsville, Alabama.

Corresponding author address: Dr. Katrina Virts, NASA Marshall Space Flight Center, ZP-11, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: katrina.virts@nsstc.uah.edu

Abstract

Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Premonsoon (April–May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June–September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do premonsoon MCSs.

During the monsoon, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30–60-day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeastward over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0022.s1.

Current affiliation: NASA Marshall Space Flight Center, Huntsville, Alabama.

Corresponding author address: Dr. Katrina Virts, NASA Marshall Space Flight Center, ZP-11, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: katrina.virts@nsstc.uah.edu

Supplementary Materials

    • Supplemental Materials (DOC 378.50 KB)
Save