• Brune, W. H., and et al. , 2016: Ozone production chemistry in the presence of urban plumes. Faraday Discuss., 189, 169189, doi:10.1039/C5FD00204D.

    • Search Google Scholar
    • Export Citation
  • Cantrell, C. A., , G. D. Edwards, , S. Stephens, , L. Mauldin, , E. Kosciuch, , and M. Zondlo, 2003: Peroxy radical observations using chemical ionization, mass spectrometry during TOPSE. J. Geophys. Res., 108, 8371, doi:10.1029/2002JD002715.

    • Search Google Scholar
    • Export Citation
  • Carlton, A. G., and et al. , 2016: The Southeast Atmosphere Studies (SAS): Coordinated investigation and discovery to answer critical questions about fundamental atmospheric processes. Bull. Amer. Meteor. Soc., submitted.

    • Search Google Scholar
    • Export Citation
  • Carslaw, N., and et al. , 2001: OH and HO2 radical chemistry in a forested region of north-western Greece. Atmos. Environ., 35, 4725, doi:10.1016/S1352-2310(01)00089-9.

    • Search Google Scholar
    • Export Citation
  • Chen, S., , W. H. Brune, , O. O. Oluwole, , C. E. Kolb, , F. Bacon, , G. Y. Li, , and H. Rabitz, 2012: Global sensitivity analysis of the regional atmospheric chemical mechanism: An application of random sampling-high dimensional model representation to urban oxidation chemistry. Environ. Sci. Technol., 46, 11 16211 170, doi:10.1021/es301565w.

    • Search Google Scholar
    • Export Citation
  • Crounse, J. D., , F. Paulot, , H. G. Kjaergaard, , and P. O. Wennberg, 2011: Peroxy radical isomerization in the oxidation of isoprene. Phys. Chem. Chem. Phys., 13, 13 60713 613, doi:10.1039/c1cp21330j.

    • Search Google Scholar
    • Export Citation
  • Crounse, J. D., , H. C. Knap, , K. B. Ørnsø, , S. Jørgensen, , F. Paulot, , H. G. Kjaergaard, , and P. O. Wennberg, 2012: On the atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of OH and O2. J. Phys. Chem., 116A, 57565762, doi:10.1021/jp211560u.

    • Search Google Scholar
    • Export Citation
  • Crounse, J. D., , L. B. Nielsen, , S. Jorgensen, , H. G. Kjaergaard, , and P. O. Wennberg, 2013: Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett., 4, 35133520, doi:10.1021/jz4019207.

    • Search Google Scholar
    • Export Citation
  • Di Carlo, P., and et al. , 2004: Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science, 304, 722725, doi:10.1126/science.1094392.

    • Search Google Scholar
    • Export Citation
  • Faloona, I. C., and et al. , 2004: A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration. J. Atmos. Chem., 47, 139167, doi:10.1023/B:JOCH.0000021036.53185.0e.

    • Search Google Scholar
    • Export Citation
  • Fuchs, H., , B. Bohn, , A. Hofzumahaus, , F. Holland, , K. Lu, , S. Nehr, , F. Rohrer, , and A. Wahner, 2011: Detection of HO2 by laser-induced fluorescence: Calibration and interferences from RO2 radicals. Atmos. Meas. Tech., 4, 12091225, doi:10.5194/amt-4-1209-2011.

    • Search Google Scholar
    • Export Citation
  • Fuchs, H., and et al. , 2013: Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nat. Geosci., 6, 10231026, doi:10.1038/ngeo1964.

    • Search Google Scholar
    • Export Citation
  • Griffith, S. M., and et al. , 2016: Measurements of hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets. J. Geophys. Res. Atmos., 121, 42114232, doi:10.1002/2015JD024358.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. A., , E. S. Edgerton, , B. E. Hartsell, , J. J. Jansen, , N. Kandasamy, , G. M. Hidy, , and C. L. Blanchard, 2003: The Southeastern Aerosol Research and Characterization Study: Part 1—Overview. J. Air Waste Manage. Assoc., 53, 14601471, doi:10.1080/10473289.2003.10466318.

    • Search Google Scholar
    • Export Citation
  • Hens, K., and et al. , 2014: Observation and modelling of HOx radicals in a boreal forest. Atmos. Chem. Phys., 14, 87238747, doi:10.5194/acp-14-8723-2014.

    • Search Google Scholar
    • Export Citation
  • Hofzumahaus, A., and et al. , 2009: Amplified trace gas removal in the troposphere. Science, 324, 17021704, doi:10.1126/science.1164566.

    • Search Google Scholar
    • Export Citation
  • Jenkin, M. E., , S. M. Saunders, , and M. J. Pilling, 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ., 31, 81104, doi:10.1016/S1352-2310(96)00105-7.

    • Search Google Scholar
    • Export Citation
  • Jenkin, M. E., , J. C. Young, , and A. R. Richard, 2015: The MCMv3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys., 15, 11 43311 459, doi:10.5194/acp-15-11433-2015.

    • Search Google Scholar
    • Export Citation
  • Kaiser, J., and et al. , 2016: Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmos. Chem. Phys., 16, 93499359, doi:10.5194/acp-16-9349-2016.

    • Search Google Scholar
    • Export Citation
  • Kim, S., and et al. , 2013: Evaluation of HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmos. Chem. Phys., 13, 20312044, doi:10.5194/acp-13-2031-2013.

    • Search Google Scholar
    • Export Citation
  • Kovacs, T., , and W. Brune, 2001: Total OH loss rate measurement. J. Atmos. Chem., 39, 105122, doi:10.1023/A:1010614113786.

  • Kubistin, D., and et al. , 2010: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: Comparison of measurements with the box model MECCA. Atmos. Chem. Phys., 10, 97059728, doi:10.5194/acp-10-9705-2010.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and et al. , 2008: Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452, 737740, doi:10.1038/nature06870.

    • Search Google Scholar
    • Export Citation
  • Levy, H. I. I., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141143, doi:10.1126/science.173.3992.141.

    • Search Google Scholar
    • Export Citation
  • Lou, S., and et al. , 2010: Atmospheric OH reactivities in the Pearl River Delta—China in summer 2006: Measurement and model results. Atmos. Chem. Phys., 10, 11 24311 260, doi:10.5194/acp-10-11243-2010.

    • Search Google Scholar
    • Export Citation
  • Madronich, S., , and G. Weller, 1990: Numerical integration errors in calculated tropospheric photodissociation rate coefficients. J. Atmos. Chem., 10, 289300, doi:10.1007/BF00053864.

    • Search Google Scholar
    • Export Citation
  • Mao, J., and et al. , 2009: Airborne measurement of OH reactivity during INTEX-B. Atmos. Chem. Phys., 9, 163173, doi:10.5194/acp-9-163-2009.

    • Search Google Scholar
    • Export Citation
  • Mao, J., and et al. , 2012: Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmos. Chem. Phys., 12, 80098020, doi:10.5194/acp-12-8009-2012.

    • Search Google Scholar
    • Export Citation
  • Martinez, M., and et al. , 2010: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: Airborne measurements. Atmos. Chem. Phys., 10, 37593773, doi:10.5194/acp-10-3759-2010.

    • Search Google Scholar
    • Export Citation
  • McKeen, S. A., and et al. , 1997: Photochemical modeling of hydroxyl and its relationship to other species during the Tropospheric OH Photochemistry Experiment. J. Geophys. Res., 102, 64676493, doi:10.1029/96JD03322.

    • Search Google Scholar
    • Export Citation
  • Monks, P. S., 2005: Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev., 34, 376395, doi:10.1039/b307982c.

  • Mogensen, D., and et al. , 2011: Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmos. Chem. Phys., 11, 97099719, doi:10.5194/acp-11-9709-2011.

    • Search Google Scholar
    • Export Citation
  • Nölscher, A. C., and et al. , 2012: Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos. Chem. Phys., 12, 82578270, doi:10.5194/acp-12-8257-2012.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: SOAS Centreville data. NOAA/ESRL, accessed 26 September 2016. [Available online at http://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/Ground/DataDownload/.]

  • Paulot, F., , J. D. Crounse, , H. G. Kjaergaard, , A. Kürten, , J. M. St. Clair, , J. H. Seinfeld, , and P. O. Wennberg, 2009: Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science, 325, 730733, doi:10.1126/science.1172910.

    • Search Google Scholar
    • Export Citation
  • Peeters, J., , and J.-F. Müller, 2010: HOx radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: Experimental evidence and global impact. Phys. Chem. Chem. Phys., 12, 14 22714 235, 10.1039/c0cp00811g.

    • Search Google Scholar
    • Export Citation
  • Peeters, J., , T. L. Nguyen, , and L. Vereecken, 2009: HOx radical regeneration in the oxidation of isoprene. Phys. Chem. Chem. Phys., 11, 59355939, doi:10.1039/b908511d.

    • Search Google Scholar
    • Export Citation
  • Peeters, J., , J.-F. Müller, , T. Strvrakou, , and V. S. Nguyen, 2014: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: The upgraded LIM1 mechanism. J. Phys. Chem., 118A, 86258643, doi:10.1021/jp5033146.

    • Search Google Scholar
    • Export Citation
  • Pilling, M. J., 2008: Simulating atmospheric gas-phase chemistry: Uncertainties and mechanism reduction problems. Simulation and Assessment of Chemical Processes, I. Barnes and M. M. Kharytonov, Eds., Springer Science, 83–93.

  • Praske, E., , J. D. Crounse, , K. H. Bates, , T. Kurten, , H. G. Kjaergaard, , and P. O. Wennberg, 2015: Atmospheric fate of methyl vinyl ketone: Peroxy radical reactions with NO and HO2. J. Phys. Chem., 119A, 45624572, doi:10.1021/jp5107058.

    • Search Google Scholar
    • Export Citation
  • Pugh, T. A. M., and et al. , 2010: Simulating atmospheric composition over a South-East Asian tropical rainforest: Performance of a chemistry box model. Atmos. Chem. Phys., 10, 279298, doi:10.5194/acp-10-279-2010.

    • Search Google Scholar
    • Export Citation
  • Ren, X., and et al. , 2006: OH, HO2, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002 campaign: Observations and model comparison. J. Geophys. Res., 111, D10S03, doi:10.1029/2005JD006126.

    • Search Google Scholar
    • Export Citation
  • Ren, X., and et al. , 2008: HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies. J. Geophys. Res., 113, D05310, doi:10.1029/2007JD009166.

    • Search Google Scholar
    • Export Citation
  • Ren, X., and et al. , 2012: Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS. Atmos. Meas. Tech., 5, 20252037, doi:10.5194/amt-5-2025-2012.

    • Search Google Scholar
    • Export Citation
  • Ren, X., and et al. , 2013: Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas. J. Geophys. Res. Atmos., 118, 57705780, doi:10.1002/jgrd.50342.

    • Search Google Scholar
    • Export Citation
  • Rohrer, F., and et al. , 2014: Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nat. Geosci., 7, 559563, doi:10.1038/ngeo2199.

    • Search Google Scholar
    • Export Citation
  • St. Clair, J. M., and et al. , 2015: Kinetics and products of the reaction of the first-generation isoprene hydroxy hydroperoxide (ISOPOOH) with OH. J. Phys. Chem., 120A, 14411451, doi:10.1021/acs.jpca.5b06532.

    • Search Google Scholar
    • Export Citation
  • Stone, D., and et al. , 2011: Isoprene oxidation mechanisms: Measurements and modelling of OH and HO2 over a South-East Asian tropical rainforest during the OP3 field campaign. Atmos. Chem. Phys., 11, 67496771, doi:10.5194/acp-11-6749-2011.

    • Search Google Scholar
    • Export Citation
  • Stone, D., , L. K. Whalley, , and D. E. Heard, 2012: Tropospheric OH and HO2 radicals: Field measurements and model comparisons. Chem. Soc. Rev., 41, 63486404, doi:10.1039/c2cs35140d.

    • Search Google Scholar
    • Export Citation
  • Tan, D., and et al. , 2001: HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign. J. Geophys. Res., 106, 24 40724 427, doi:10.1029/2001JD900016.

    • Search Google Scholar
    • Export Citation
  • Taraborrelli, D., , M. G. Lawrence, , J. N. Crowley, , T. J. Dillon, , S. Gromov, , C. B. M. Gros, , L. Vereecken, , and J. Lelieveld, 2012: Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat. Geosci., 5, 190193, doi:10.1038/ngeo1405.

    • Search Google Scholar
    • Export Citation
  • Trebs, I., and et al. , 2009: Relationship between the NO2 photolysis frequency and the solar global irradiance. Atmos. Meas. Tech., 2, 725739, doi:10.5194/amt-2-725-2009.

    • Search Google Scholar
    • Export Citation
  • Wennberg, P. O., and et al. , 1994: Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, NO2, ClO, and BrO. Science, 266, 398404, doi:10.1126/science.266.5184.398.

    • Search Google Scholar
    • Export Citation
  • Whalley, L. K., and et al. , 2011: Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmos. Chem. Phys., 11, 72237233, doi:10.5194/acp-11-7223-2011.

    • Search Google Scholar
    • Export Citation
  • Whalley, L. K., , M. A. Blitz, , M. Desservettaz, , P. W. Seakins, , and D. E. Heard, 2013: Reporting the sensitivity of laser-induced fluorescence instruments used for HO2 detection to an interference from RO2 radicals and introducing a novel approach that enables HO2 and certain RO2 types to be selectively measured. Atmos. Meas. Tech., 6, 34253440, doi:10.5194/amt-6-3425-2013.

    • Search Google Scholar
    • Export Citation
  • Wolfe, G. M., , and J. A. Thornton, 2011: The Chemistry of Atmosphere-Forest Exchange (CAFE) Model—Part 1: Model description and characterization. Atmos. Chem. Phys., 11, 77101, doi:10.5194/acp-11-77-2011.

    • Search Google Scholar
    • Export Citation
  • Wolfe, G. M., , J. A. Thornton, , M. McKay, , and A. H. Goldstein, 2011: Forest-atmosphere exchange of ozone: Sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmos. Chem. Phys., 11, 78757891, doi:10.5194/acp-11-7875-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 14
PDF Downloads 63 63 15

Testing Atmospheric Oxidation in an Alabama Forest

View More View Less
  • 1 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 University of California, Berkeley, Berkeley, California
  • | 3 John A. Paulson School of Engineering and Applied Sciences, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
  • | 4 Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin
  • | 5 California Institute of Technology, Pasadena, California
  • | 6 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 7 National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado
  • | 8 Department of Earth System Science, University of California, Irvine, Irvine, California
  • | 9 Atmospheric Research and Analysis, Inc., Cary, North Carolina
  • | 10 Department of Chemistry, Reed College, Portland, Oregon
© Get Permissions
Restricted access

Abstract

The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0044.s1.

Corresponding author address: William H. Brune, Department of Meteorology and Atmospheric Science, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: whb2@psu.edu

Abstract

The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0044.s1.

Corresponding author address: William H. Brune, Department of Meteorology and Atmospheric Science, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: whb2@psu.edu
Save