• Berner, J., and et al. , 2016: Stochastic parameterization: Towards a new view of weather and climate models. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00268.1, in press.

    • Search Google Scholar
    • Export Citation
  • Bodenschatz, E., , S. P. Malinowski, , R. A. Shaw, , and F. Stratmann, 2010: Can we understand clouds without turbulence? Science, 327, 970971, doi:10.1126/science.1185138.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., 1993: Observations of cloud microstructure at the centimeter scale. J. Atmos. Sci., 32, 783793, doi:10.1175/1520-0450(1993)032<0783:OOCMAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., , A. Marshak, , H. Gerber, , and W. J. Wiscombe, 1999: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. J. Geophys. Res., 104, 61236144, doi:10.1029/1998JD200078.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , D. J. Cziczo, , A. J. Prenni, , D. M. Murphy, , S. M. Kreidenweis, , D. S. Thomson, , R. Borys, , and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1981: Stochastically driven large-scale circulations with multiple equilibria. J. Atmos. Sci., 38, 26062618, doi:10.1175/1520-0469(1981)038<2606:SDLSCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739759, doi:10.1111/j.2153-3490.1969.tb00483.x.

  • Gardiner, C. W., 1983: Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. Springer-Verlag, 442 pp.

  • Gerber, H., , J. B. Jensen, , A. B. Davis, , A. Marshak, , and W. J. Wiscombe, 2001: Spectral density of cloud liquid water content at high frequencies. J. Atmos. Sci., 58, 497503, doi:10.1175/1520-0469(2001)058<0497:SDOCLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guckenheimer, J., , and P. Holmes, 1983: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, 459 pp.

  • Haman, K., , and S. P. Malinowski, 1996: Temperature measurements in clouds on a centimetre scale: Preliminary results. Atmos. Res., 41, 161175, doi:10.1016/0169-8095(96)00007-5.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Tellus, 28, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318, doi:10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2.

  • Horsthemke, W., , and R. Lefever, 1984: Noise-Induced Transition: Theory and Applications in Physics, Chemistry, and Biology. Springer-Verlag, 318 pp.

  • Jeffery, C. A., , J. M. Reisner, , and M. Andrejczuk, 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493969, doi:10.1175/2006JAS2147.1.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 578 pp.

  • Malinowski, S. P., , M. Y. Leclerc, , and D. G. Baumgardner, 1994: Fractal analyses of high–resolution cloud droplet measurements. J. Atmos. Sci., 51, 397413, doi:10.1175/1520-0469(1994)051<0397:FAOHRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., 1979: On the broadening of a droplet distribution by turbulence near cloud base. Quart. J. Roy. Meteor. Soc., 105, 899914, doi:10.1002/qj.49710544613.

    • Search Google Scholar
    • Export Citation
  • McGraw, R., , and Y. Liu, 2006: Brownian drift-diffusion model for evolution of droplet size distribution in turbulent clouds. J. Geophys. Res., 33, L03802, doi:10.1029/2005GL023545.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , A. M. Blyth, , P. R. Brown, , T. W. Choularton, , and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127, 15131534, doi:10.1002/qj.49712757503.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , T. W. Choularton, , A. M. Blyth, , and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation production of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128, 951971, doi:10.1256/0035900021643601.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , P. J. DeMott, , and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, doi:10.1175/2007JAS2546.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , P. J. DeMott, , C. Andronache, , K. A. Pratt, , K. A. Prather, , R. Subramanian, , and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, doi:10.1175/JAS-D-12-080.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., , L. Bengtsson, , and M. A. Whitall, 2015: Stochastic aspects of convective parameterization. Parameterization of Atmospheric Convection: Current Issues and New Theories, R. S. Plant and J. I. Yano, Eds., Series on the Science of Climate Change, Vol. 2, Imperial College Press, 135–172.

  • Prenni, A. J., , P. J. DeMott, , D. C. Rogers, , S. M. Kreidenweis, , G. M. McFarquhar, , G. Zhang, , and M. R. Poellot, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formulation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Search Google Scholar
    • Export Citation
  • Reskin, H., 1984: The Fokker-Planck Equation. Springer-Verlag, 454 pp.

  • Rogers, R. R., , and M. K. Yau, 1989: Short Course in Cloud Physics. 3rd ed. Pergamon Press, 290 pp.

  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227, doi:10.1146/annurev.fluid.35.101101.161125.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., , K. Lehmann, , and M. Wendisch, 2006: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63, 14511466, doi:10.1175/JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , Y. Nagano, , and Y. Kushiyama, 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527, doi:10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., , and M. K. Yau, 2000: Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81, 285298, doi:10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collisions. J. Atmos. Sci., 35, 21682180, doi:10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , and V. T. J. Phillips, 2011: Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333, doi:10.1175/2010JAS3607.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , V. T. J. Phillips, , and V. Kanawade, 2016: Explosive ice multiplication by mechanical break-up in ice–ice collisions: A dynamical system-based study. Quart. J. Roy. Meteor. Soc., 142, 867879, doi:10.1002/qj.2687.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 5
PDF Downloads 17 17 5

Explosive Ice Multiplication Induced by Multiplicative-Noise Fluctuation of Mechanical Breakup in Ice–Ice Collisions

View More View Less
  • 1 CNRM, Météo-France, and CNRS, UMR 3589, Toulouse, France
  • | 2 Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
© Get Permissions
Restricted access

Abstract

The number of ice fragments generated by breakup of large graupel in collisions with small graupel fluctuates randomly owing to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates the impact of the stochasticity of breakup on ice multiplication.

When both the rate of generation of primary ice and the initial number concentration of ice crystals are low, the system most likely loses all the initial ice and graupel owing to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase space. However, a fluctuation of ice breakup number gives a small but finite chance that substantial ice crystal fragments are generated by breakup of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively.

The randomness considered here belongs to a particular category called “multiplicative” noise, because the noise amplitude is proportional to a given physical state. To contrast the multiplicative-noise nature of ice breakup with a standard “additive” noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker–Planck equation that explicitly describes the evolution of the probability distribution with time. As an important conclusion, stability in the phase space of the cloud microphysical system of breakup in ice–ice collisions is substantially altered by the multiplicative noise.

Denotes Open Access content.

Corresponding author address: Jun-Ichi Yano, CNRM, Météo-France, 42 av Coriolis, 31057 Toulouse CEDEX, France. E-mail: jiy.gfder@gmail.com

Abstract

The number of ice fragments generated by breakup of large graupel in collisions with small graupel fluctuates randomly owing to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates the impact of the stochasticity of breakup on ice multiplication.

When both the rate of generation of primary ice and the initial number concentration of ice crystals are low, the system most likely loses all the initial ice and graupel owing to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase space. However, a fluctuation of ice breakup number gives a small but finite chance that substantial ice crystal fragments are generated by breakup of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively.

The randomness considered here belongs to a particular category called “multiplicative” noise, because the noise amplitude is proportional to a given physical state. To contrast the multiplicative-noise nature of ice breakup with a standard “additive” noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker–Planck equation that explicitly describes the evolution of the probability distribution with time. As an important conclusion, stability in the phase space of the cloud microphysical system of breakup in ice–ice collisions is substantially altered by the multiplicative noise.

Denotes Open Access content.

Corresponding author address: Jun-Ichi Yano, CNRM, Météo-France, 42 av Coriolis, 31057 Toulouse CEDEX, France. E-mail: jiy.gfder@gmail.com
Save