• Chagnon, J. M., , and P. R. Bannon, 2001: Hydrostatic and geostrophic adjustment in a compressible atmosphere: Initial response and final equilibrium to an instantaneous localized heating. J. Atmos. Sci., 58, 37763792, doi:10.1175/1520-0469(2001)058<3776:HAGAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 20442061, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, doi:10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., , and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 38493877, doi:10.1016/j.jcp.2007.12.009.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., , J. F. Kelly, , and E. M. Constantinescu, 2013: Implicit–explicit formulations of a three-dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM J. Sci. Comput., 35, 11621194, doi:10.1137/120876034.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., 2010: Tropical cyclone inner-core dynamics: A latent heat retrieval and its effects on intensity and structure change; and the impacts of effective diffusion on the axisymmetrization process. Ph. D. dissertation, Dept. of Earth, Ocean and Atmospheric Science, Florida State University, 132 pp. [Available online at http://diginole.lib.fsu.edu/etd/3920.]

  • Guimond, S. R., , M. A. Bourassa, , and P. D. Reasor, 2011: A latent heat retrieval and its effects on the intensity and structure change of Hurricane Guillermo (1997). Part I: The algorithm and observations. J. Atmos. Sci., 68, 15491567, doi:10.1175/2011JAS3700.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, doi:10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, J. F., , and F. X. Giraldo, 2012: Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode. J. Comput. Phys., 231, 79888008, doi:10.1016/j.jcp.2012.04.042.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., , G. H. Bryan, , and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., , and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, doi:10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leonard, B., , and J. Drummond, 1995: Why you should not use “hybrid”, “power-law” or related exponential schemes for convective modeling—There are much better alternatives. Int. J. Numer. Methods Fluids, 20, 421442, doi:10.1002/fld.1650200602.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., , J. C. McWilliams, , and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159, doi:10.1017/S0022112087001150.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, doi:10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, 128, doi:10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and B. F. Farrell, 1999: The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci., 56, 39373962, doi:10.1175/1520-0469(1999)056<3937:TIOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, doi:10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and L. D. Grasso, 2003: Three-dimensional, nonhydrostatic perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , Y. Moon, , and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , M. T. Montgomery, , J. C. McWilliams, , and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, doi:10.5194/acp-13-12299-2013.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks Jr., , and J. F. Gamache, 2000: Low- wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., , V. A. Mousseau, , A. A. Wyszogrodzki, , and D. A. Knoll, 2005: An implicitly balanced hurricane model with physics-based preconditioning. Mon. Wea. Rev., 133, 10031022, doi:10.1175/MWR2901.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, G. B., , and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence of azimuthal wave-number or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121, 16151650, doi:10.1002/qj.49712152707.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, doi:10.1029/GL009i005p00575.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L., , and W. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128, 28532864, doi:10.1175/1520-0493(2000)128<2853:HOMNDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, B., , Y. Wang, , and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 7
PDF Downloads 17 17 6

The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 3 Department of Applied Mathematics, Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible.

Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia–gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia–gravity wave activity is much smaller, resulting in good agreement between models.

The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia–gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

Current affiliation: Department of Geophysics, Stanford University, Stanford, California.

Corresponding author address: Stephen R. Guimond, ESSIC, University of Maryland, College Park, 5825 University Research Ct. #4001, College Park, MD 20740. E-mail: sguimond@umd.edu

Abstract

The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible.

Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia–gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia–gravity wave activity is much smaller, resulting in good agreement between models.

The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia–gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

Current affiliation: Department of Geophysics, Stanford University, Stanford, California.

Corresponding author address: Stephen R. Guimond, ESSIC, University of Maryland, College Park, 5825 University Research Ct. #4001, College Park, MD 20740. E-mail: sguimond@umd.edu
Save