• Achatz, U., 2005: On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids, 17, 094107, doi:10.1063/1.2046709.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., 2007: Gravity-wave breaking: Linear and primary nonlinear dynamics. Adv. Space Res., 40, 719733, doi:10.1016/j.asr.2007.03.078.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., , R. Klein, , and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147, doi:10.1017/S0022112010003411.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, doi:10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol.-Terr. Phys., 66, 683696, doi:10.1016/j.jastp.2004.01.019.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, doi:10.1002/qj.49709239403.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , J. W. Rottman, , and S. D. Eckermann, 2004: Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech., 36, 233253, doi:10.1146/annurev.fluid.36.050802.122022.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , and M. E. McIntyre, 1999: On shear-generated gravity waves that reach the mesosphere. Part II: Wave propagation. J. Atmos. Sci., 56, 37643773, doi:10.1175/1520-0469(1999)056<3764:OSGGWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , and M. E. McIntyre, 2003: Remote recoil: A new wave-mean interaction effect. J. Fluid Mech., 492, 207230, doi:10.1017/S0022112003005639.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , and M. E. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer–Dobson circulation. Rev. Geophys., 52, 157184, doi:10.1002/2013RG000448.

  • Coiffier, J., 2011: Numerical Weather Prediction. 2nd ed. Cambridge University Press, 340 pp.

  • Dosser, H. V., , and B. Sutherland, 2011: Anelastic internal wave packet evolution and stability. J. Atmos. Sci., 68, 28442859, doi:10.1175/JAS-D-11-097.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, doi:10.1029/96JD02999.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Geophys. Res., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and C. Marks, 1997: GROGRAT: A new model of the global propagation and dissipation of atmospheric gravity waves. Adv. Space Res., 20, 12531256, doi:10.1016/S0273-1177(97)00780-1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286, 15341537, doi:10.1126/science.286.5444.1534.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , C. Bizon, , J. A. Werne, , and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108, 8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , S. L. Vadas, , K. Wan, , and J. A. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys., 68, 247265, doi:10.1016/j.jastp.2005.04.010.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , L. Wang, , J. A. Werne, , T. Lund, , and K. Wan, 2009: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148, doi:10.1175/2008JAS2726.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , L. Wang, , and J. A. Werne, 2013: Gravity wave–fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. J. Atmos. Sci., 70, 37103734, doi:10.1175/JAS-D-13-055.1.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1975: Nonlinear internal gravity waves in a rotating fluid. J. Fluid Mech., 71, 497512, doi:10.1017/S0022112075002704.

  • Hertzog, A., , C. Souprayen, , and A. Hauchecorne, 2002: Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. J. Fluid Mech., 107, 4145, doi:10.1029/2001JD000815.

    • Search Google Scholar
    • Export Citation
  • Hickel, S., , N. A. Adams, , and J. Domaradzki, 2006: An adaptive local deconvolution model for implicit LES. J. Comput. Phys., 213, 413436, doi:10.1016/j.jcp.2005.08.017.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler spread gravity-wave parametrization of momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, doi:10.1016/S1364-6826(96)00079-X.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler spread gravity-wave parametrization of momentum deposition in the middle atmosphere. Part 2: Broad spectra and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, doi:10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., 1978: The stratosphere and mesosphere. Quart. J. Roy. Meteor. Soc., 104, 129, doi:10.1002/qj.49710443902.

  • Kim, Y.-J., , D. S. Eckermann, , and H. Chund, 2003: An overview of past, present and future gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , J. H. Richter, , Y. Orsolinic, , F. Stordald, , and O. Kvisseld, 2012: The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. J. Atmos. Sol.-Terr. Phys., 78–79, 8498, doi:10.1016/j.jastp.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Lombard, P., , and J. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8, 32713287, doi:10.1063/1.869117.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , and M. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, doi:10.1002/jgrd.50705.

    • Search Google Scholar
    • Export Citation
  • Marks, C., , and S. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52, 19591984, doi:10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parametrization of associated gravity wave drag. J. Geophys. Res., 100, 25 84125 854, doi:10.1029/95JD02533.

    • Search Google Scholar
    • Export Citation
  • Muraschko, J., , M. Fruman, , U. Achatz, , S. Hickel, , and Y. Toledo, 2015: On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, doi:10.1002/qj.2381.

    • Search Google Scholar
    • Export Citation
  • Nappo, J. C., 2002: An Introduction to Atmospheric Gravity Waves. 1st ed. Academic Press, 276 pp.

  • Ribstein, B., , U. Achatz, , and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model. J. Geophys. Res. Space Phys., 120, 67956817, doi:10.1002/2015JA021349.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Towards a physically based gravity wave source parameterization. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rieper, F., , U. Achatz, , and R. Klein, 2013a: Range of validity of an extended WKB theory for atmospheric gravity waves: One-dimensional and two-dimensional case. J. Fluid Mech., 729, 330363, doi:10.1017/jfm.2013.307.

    • Search Google Scholar
    • Export Citation
  • Rieper, F., , S. Hickel, , and U. Achatz, 2013b: A conservative integration of the pseudo-incompressible equations with implicit turbulence parameterization. Mon. Wea. Rev., 141, 861886, doi:10.1175/MWR-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., , J. R. Knight, , G. K. Vallis, , and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, doi:10.1007/s00382-011-1080-7.

    • Search Google Scholar
    • Export Citation
  • Senf, F., , and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, doi:10.1029/2011JD015794.

    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2006: Weakly nonlinear internal gravity wavepackets. J. Fluid Mech., 569, 249258, doi:10.1017/S0022112006003016.

  • Sutherland, B. R., 2010: Internal Gravity Waves. Cambridge University Press, 377 pp.

  • van Leer, B., 1979: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys., 32, 101136, doi:10.1016/0021-9991(79)90145-1.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., , and M. E. McIntyre, 2001: An ultrasimple spectral parametrization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857, doi:10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 7
PDF Downloads 89 89 9

The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An Efficient Description beyond the Nonacceleration Paradigm

View More View Less
  • 1 Institute for Atmosphere and Environment, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
© Get Permissions
Restricted access

Abstract

With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical weather prediction and climate models, the comparative relevance in GW drag of direct GW–mean flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel–Kramer–Brillouin (WKB) theory can capture direct wave–mean flow interactions that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave-action density in phase space, thereby avoiding numerical instabilities due to caustics. It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving large-eddy simulations (LESs) provide the reference. In all of these cases, the WKB simulations including direct GW–mean flow interactions already reproduce the LES data to a good accuracy without a wave-breaking scheme. The latter scheme provides a next-order correction that is useful for fully capturing the total energy balance between wave and mean flow. Moreover, a steady-state WKB implementation as used in present GW parameterizations where turbulence provides by the noninteraction paradigm, the only possibility to affect the mean flow, is much less able to yield reliable results. The GW energy is damped too strongly and induces an oversimplified mean flow. This argues for WKB approaches to GW parameterization that take wave transience into account.

Corresponding author address: Gergely Bölöni, Institute for Atmosphere and Environment, Goethe University Frankfurt am Main, Altenhöferallee 1, Frankfurt am Main 60438, Germany. E-mail: boeloeni@rz.uni-frankfurt.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical weather prediction and climate models, the comparative relevance in GW drag of direct GW–mean flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel–Kramer–Brillouin (WKB) theory can capture direct wave–mean flow interactions that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave-action density in phase space, thereby avoiding numerical instabilities due to caustics. It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving large-eddy simulations (LESs) provide the reference. In all of these cases, the WKB simulations including direct GW–mean flow interactions already reproduce the LES data to a good accuracy without a wave-breaking scheme. The latter scheme provides a next-order correction that is useful for fully capturing the total energy balance between wave and mean flow. Moreover, a steady-state WKB implementation as used in present GW parameterizations where turbulence provides by the noninteraction paradigm, the only possibility to affect the mean flow, is much less able to yield reliable results. The GW energy is damped too strongly and induces an oversimplified mean flow. This argues for WKB approaches to GW parameterization that take wave transience into account.

Corresponding author address: Gergely Bölöni, Institute for Atmosphere and Environment, Goethe University Frankfurt am Main, Altenhöferallee 1, Frankfurt am Main 60438, Germany. E-mail: boeloeni@rz.uni-frankfurt.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Save