• Akahori, K., , and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54, 23492361, doi:10.1175/1520-0469(1997)054<2349:ZFVABO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, D. R., , and N. Nakamura, 2003: Tracer equivalent latitude: A diagnostic tool for isentropic transport studies. J. Atmos. Sci., 60, 287304, doi:10.1175/1520-0469(2003)060<0287:TELADT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., , V. Ramanathan, , and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , E. Shuckburgh, , J.-B. Sallee, , Z. Wang, , A. J. S. Meijers, , N. Bruneau, , T. Phillips, , and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, doi:10.1002/jgrd.50153.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., , and E. E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 13191339, doi:10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , Y.-T. Hwang, , D. M. W. Frierson, , and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , M. D. Zelinka, , and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, doi:10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , J. Lu, , and L. Sun, 2013: Delineating the eddy–zonal flow interaction in the atmospheric circulation response to climate forcing: Uniform SST warming in an idealized aquaplanet model. J. Atmos. Sci., 70, 22142233, doi:10.1175/JAS-D-12-0248.1.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Feldstein, S. B., , and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 64976518, doi:10.1175/JCLI-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805, doi:10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: Structural changes of growing baroclinic waves. J. Atmos. Sci., 33, 374390, doi:10.1175/1520-0469(1976)033<0374:SCOGBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and L. M. Polvani, 2014a: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, doi:10.1002/2014GL061638.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and L. M. Polvani, 2014b: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Haqq-Misra, J., , S. Lee, , and D. M. W. Frierson, 2011: Tropopause structure and the role of eddies. J. Atmos. Sci., 68, 29302944, doi:10.1175/JAS-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part I: Axisymmetric flow. J. Atmos. Sci., 58, 28452858, doi:10.1175/1520-0469(2001)058<2845:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, doi:10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and C. Yoo, 2014: On the causal relationship between poleward heat flux and the equator-to-pole temperature gradient: A cautionary tale. J. Climate, 27, 65196525, doi:10.1175/JCLI-D-14-00236.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, doi:10.1175/JCLI-D-14-00825.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, doi:10.1175/JAS-D-13-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , L. Sun, , Y. Wu, , and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming–like thermal forcing. J. Climate, 27, 22972316, doi:10.1175/JCLI-D-13-00372.1.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , C. Schwierz, , and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, doi:10.1175/JAS3977.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , M. P. Clark, , and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Methven, J., , and P. Berrisford, 2015: The slowly evolving background state of the atmosphere. Quart. J. Roy. Meteor. Soc., 141, 22372258, doi:10.1002/qj.2518.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, doi:10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 67, 39673983, doi:10.1175/2010JAS3503.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, doi:10.1175/2010JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and A. Solomon, 2011: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II: Analysis in the isentropic coordinate. J. Atmos. Sci., 68, 27832799, doi:10.1175/2011JAS3685.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and L. Wang, 2013: On the thickness ratio in the quasigeostrophic two-layer model of baroclinic instability. J. Atmos. Sci., 70, 15051511, doi:10.1175/JAS-D-12-0344.1.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., , Y. Zhang, , G. Chen, , X.-Q. Yang, , and D. A. Burrows, 2014: Quantifying barotropic and baroclinic eddy feedbacks in the persistence of the Southern Annular Mode. Geophys. Res. Lett., 41, 86368644, doi:10.1002/2014GL062210.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., , Y. Zhang, , G. Chen, , and X.-Q. Yang, 2016: Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci., 73, 429448, doi:10.1175/JAS-D-15-0090.1.

    • Search Google Scholar
    • Export Citation
  • Park, M., , and S. Lee, 2013: The impact of meridonal wind shear on baroclinic life cycle. Asia-Pac. J. Atmos. Sci., 49, 133137, doi:10.1007/s13143-013-0014-1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 16791684, doi:10.1175/1520-0469(1980)037<1679:BIOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , T. A. Shaw, , and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , G. Chen, , and J. Lu, 2012: Finite-amplitude Lagrangian-mean wave activity diagnostics applied to the baroclinic eddy life cycle. J. Atmos. Sci., 69, 30133027, doi:10.1175/JAS-D-11-0294.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. J. Ivy, , D. Kinnison, , M. J. Mills, , R. R. Neely, , and A. Schmidt, 2016: Emergence of healing in the Antarctic ozone layer. Science, 353, 269274, doi:10.1126/science.aae0061.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and et al. , 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , G. Chen, , and J. Lu, 2013: Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J. Atmos. Sci., 70, 24872504, doi:10.1175/JAS-D-12-0298.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and et al. , 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , R. Seager, , T. A. Shaw, , M. Ting, , and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935, doi:10.1175/JCLI-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 9
PDF Downloads 37 37 8

The Role of Eddy Diffusivity on a Poleward Jet Shift

View More View Less
  • 1 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The authors use a quasigeostrophic (QG) two-layer model to examine how eddies modify the meridional asymmetry of a zonal jet. The initial asymmetry is introduced in the model’s “radiative equilibrium state” and is intended to mimic a radiatively forced poleward jet shift simulated by climate models. The calculations show that the initial “poleward” jet shift in the two-layer model is amplified by eddy potential vorticity fluxes. This eddy-accentuation effect is greater as the baroclinicity of the equilibrium state is reduced, suggesting that seasonal variations in baroclinicity may help explain observed and modeled jet-shift sensitivity to season. The eddy-accentuated jet shift from the corresponding radiative equilibrium state is more clearly visible in the slowly varying, eddy-free reference state of Nakamura and Zhu. This reference state formally responds only to nonadvective, nonconservative processes, but ultimately arises from the advective eddy fluxes. The implication is that fast eddies are capable of driving a slowly varying jet shift, which may be balanced by nonconservative processes such as radiative heating/cooling.

Corresponding author address: Lei Wang, Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637. E-mail: leiw@uchicago.edu

Abstract

The authors use a quasigeostrophic (QG) two-layer model to examine how eddies modify the meridional asymmetry of a zonal jet. The initial asymmetry is introduced in the model’s “radiative equilibrium state” and is intended to mimic a radiatively forced poleward jet shift simulated by climate models. The calculations show that the initial “poleward” jet shift in the two-layer model is amplified by eddy potential vorticity fluxes. This eddy-accentuation effect is greater as the baroclinicity of the equilibrium state is reduced, suggesting that seasonal variations in baroclinicity may help explain observed and modeled jet-shift sensitivity to season. The eddy-accentuated jet shift from the corresponding radiative equilibrium state is more clearly visible in the slowly varying, eddy-free reference state of Nakamura and Zhu. This reference state formally responds only to nonadvective, nonconservative processes, but ultimately arises from the advective eddy fluxes. The implication is that fast eddies are capable of driving a slowly varying jet shift, which may be balanced by nonconservative processes such as radiative heating/cooling.

Corresponding author address: Lei Wang, Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637. E-mail: leiw@uchicago.edu
Save