• Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and non-equilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, D., and et al. , 2009: The SCOUT-O3 Darwin Aircraft Campaign: Rationale and meteorology. Atmos. Chem. Phys., 9, 93117, doi:10.5194/acp-9-93-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., J.-P. Cammas, J. Duron, P. J. Mascart, N. M. Sitnikov, and H.-J. Voessing, 2007: A numerical study of tropical cross-tropopause transport by convective overshoots. Atmos. Chem. Phys., 7, 17311740, doi:10.5194/acp-7-1731-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemel, C., M. R. Russo, J. A. Pyle, R. S. Sokhi, and C. Schiller, 2009: Quantifying the imprint of a severe Hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere. Mon. Wea. Rev., 137, 24932514, doi:10.1175/2008MWR2666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, T., and et al. , 2008: Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophys. Res. Lett., 35, L10810, doi:10.1029/2008GL033641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129, 15501563, doi:10.1175/1520-0493(2001)129<1550:UHTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, J. Escobar, and P. Mascart, 2015: Large-eddy simulation of Hector the convector making the stratosphere wetter. Atmos. Sci. Lett., 16, 135140, doi:10.1002/asl2.534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Reus, M., and et al. , 2009: Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmos. Chem. Phys., 9, 67756792, doi:10.5194/acp-9-6775-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2008: A simple parameterization for detrainment in shallow cumulus. Mon. Wea. Rev., 136, 560576, doi:10.1175/2007MWR2201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, doi:10.1002/qj.640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and et al. , 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferretti, R., and S. Gentile, 2009: A study of the triggering mechanisms for deep convection in the tropics using a mesoscale model: Hector events during SCOUT-O3 and TWP-ICE campaigns. Atmos. Res., 93, 247269, doi:10.1016/j.atmosres.2008.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W., and et al. , 2014: Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations. Atmos. Chem. Phys., 14, 13 22313 240, doi:10.5194/acp-14-13223-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2014: Downdrafts in the near cloud environment of deep convective updrafts. J. Adv. Model. Earth Syst., 6, 18, doi:10.1002/2013MS000261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and D. Jarecka, 2015: Modeling condensation in shallow nonprecipitating convection. J. Atmos. Sci., 72, 46614679, doi:10.1175/JAS-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., J.-J. Morcrette, C. Jakob, A. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 126, 16851710, doi:10.1002/qj.49712656607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., M. J. Manton, G. J. Holland, and B. R. Morton, 1989: The Island Thunderstorm Experiment (ITEX)—A study of tropical thunderstorms in the Maritime Continent. Bull. Amer. Meteor. Soc., 70, 152159, doi:10.1175/1520-0477(1989)070<0152:TITESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (15), doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and et al. , 1998: The Meso–NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, doi:10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. M., E. D. Rivière, V. Marécal, G. Durry, A. Hamdouni, J. Arteta, and S. Khaykin, 2010: Stratospheric water vapour budget and convection overshooting the tropopause: Modelling study from SCOUT-AMMA. Atmos. Chem. Phys., 10, 82678286, doi:10.5194/acp-10-8267-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, J. K., N. Larsen, F. Cairo, G. Di Donfrancesco, J. M. Rosen, G. Durry, G. Held, and J. P. Pommereau, 2007: Solid particles in the tropical lowest stratosphere. Atmos. Chem. Phys., 7, 685695, doi:10.5194/acp-7-685-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F., P. Mascart, J.-P. Chaboureau, C. Lac, J. Escobar, and J. Duron, 2011: Seamless MESO-NH modeling over very large grids. C. R. Mec., 339, 136140, doi:10.1016/j.crme.2010.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Proc. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical island convection over the Maritime Continent. Mon. Wea. Rev., 129, 378400, doi:10.1175/1520-0493(2001)129<0378:NSOTDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, doi:10.1175/JAS-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., and et al. , 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, doi:10.1002/2013JD021371.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 33
PDF Downloads 73 73 28

Giga-LES of Hector the Convector and Its Two Tallest Updrafts up to the Stratosphere

View More View Less
  • 1 Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France
© Get Permissions
Restricted access

Abstract

The dynamics of Hector the Convector, which overshot into the stratosphere on 30 November 2005 over the Tiwi Islands, Australia, is investigated using a giga-large-eddy simulation with a 100-m cubic mesh. Individual updrafts, defined as 3D objects with vertical velocity above 10 m s−1 are identified. Among the 20 000 updrafts formed during the most intense phase, only a dozen were more than 4 km tall. The two tallest updrafts accounted for more than 90% of the total vertical mass flux through the tropical tropopause layer. Their locations were determined by low-level convergence lines first created by the sea breeze in the morning, then enhanced by cold pools due to cumulus congestus. They finally reinforced each other as they moved inland and intersected. The two tallest updrafts that overshot the tropopause were contrasted with those occurring 1 h earlier and later. They presented larger widths (up to 8 km), greater buoyancy (up to 0.1 m s−2), stronger vertical velocities (up to 50 m s−1), and larger hydrometeor contents (more than 10 g kg−1). They kept their core weakly diluted on their way to the stratosphere with an entrainment rate as low as 0.08 km−1. Both the low-level convergence lines intensified by cold pools and the reduced mixing in the troposphere were found to be the determinant for the transition from deep to very deep convection.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Thibaut Dauhut, Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: thibaut.dauhut@aero.obs-mip.fr

Abstract

The dynamics of Hector the Convector, which overshot into the stratosphere on 30 November 2005 over the Tiwi Islands, Australia, is investigated using a giga-large-eddy simulation with a 100-m cubic mesh. Individual updrafts, defined as 3D objects with vertical velocity above 10 m s−1 are identified. Among the 20 000 updrafts formed during the most intense phase, only a dozen were more than 4 km tall. The two tallest updrafts accounted for more than 90% of the total vertical mass flux through the tropical tropopause layer. Their locations were determined by low-level convergence lines first created by the sea breeze in the morning, then enhanced by cold pools due to cumulus congestus. They finally reinforced each other as they moved inland and intersected. The two tallest updrafts that overshot the tropopause were contrasted with those occurring 1 h earlier and later. They presented larger widths (up to 8 km), greater buoyancy (up to 0.1 m s−2), stronger vertical velocities (up to 50 m s−1), and larger hydrometeor contents (more than 10 g kg−1). They kept their core weakly diluted on their way to the stratosphere with an entrainment rate as low as 0.08 km−1. Both the low-level convergence lines intensified by cold pools and the reduced mixing in the troposphere were found to be the determinant for the transition from deep to very deep convection.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Thibaut Dauhut, Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: thibaut.dauhut@aero.obs-mip.fr
Save