• Abdul‐Razzak, H., , and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Search Google Scholar
    • Export Citation
  • Ahmadov, R., and et al. , 2012: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res., 117, D06301, doi:10.1029/2011JD016831.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Alfaro, D. A., , and M. Khairoutdinov, 2015: Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci., 72, 31163137, doi:10.1175/JAS-D-14-0295.1.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. Costa, , G. Frank, , K. Longo, , and M. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., , T. L. Mote, , P. G. Dixon, , S. L. Trotter, , E. J. Powell, , J. D. Durkee, , and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, doi:10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Cambridge University Press, 571–657.

  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., , W. R. Cotton, , and W. Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Atmos. Res., 96, 560574, doi:10.1016/j.atmosres.2010.01.005.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp., doi:10.1007/978-1-935704-29-4.

  • Cheng, C.-T., , W.-C. Wang, , and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, doi:10.1016/j.atmosres.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., , and G. L. Stephens, 2012: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res., 117, D11203, doi:10.1029/2011JD017125.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., , K. D. Froyd, , S. J. Gallavardin, , O. Moehler, , S. Benz, , H. Saathoff, , and D. M. Murphy, 2009: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, doi:10.1088/1748-9326/4/4/044013.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., , M. C. Barth, , M. D. Petters, , C. Wiedinmyer, , and A. J. Prenni, 2014: Aerosol microphysical impact on summertime convective precipitation in the Rocky Mountain region. J. Geophys. Res. Atmos., 119, 11 70911 728, doi:10.1002/2014JD021883.

    • Search Google Scholar
    • Export Citation
  • Emmons, L., and et al. , 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 4367, doi:10.5194/gmd-3-43-2010.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., , D. J. Stensrud, , and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, doi:10.1175/2008MWR2528.1.

    • Search Google Scholar
    • Export Citation
  • EPA, 2011: National Emissions Inventory. U.S. Environmental Protection Agency, accessed October 2015. [Available online at ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2011/.]

  • Fan, J., , L. R. Leung, , D. Rosenfeld, , Q. Chen, , Z. Li, , J. Zhang, , and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, doi:10.1073/pnas.1316830110.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , D. Rosenfeld, , Y. Yang, , C. Zhao, , L. R. Leung, , and Z. Li, 2015: Substantial contribution of anthropogenic air pollution to catastrophic floods in southwest China. Geophys. Res. Lett., 42, 60666075, doi:10.1002/2015GL064479.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., , and S. C. Van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, doi:10.1175/JAS-D-14-0260.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , S. E. Peckham, , R. Schmitz, , S. A. McKeen, , G. Frost, , W. C. Skamarock, , and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975, doi:10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., , T. Karl, , P. Harley, , C. Wiedinmyer, , P. Palmer, , and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, doi:10.5194/acp-6-3181-2006.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., , J.-J. Baik, , and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504520, doi:10.1175/JAS-D-11-071.1.

    • Search Google Scholar
    • Export Citation
  • Hand, J., , B. Schichtel, , W. Malm, , and M. Pitchford, 2012: Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys., 12, 10 35310 365, doi:10.5194/acp-12-10353-2012.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Jin, M., , J. M. Shepherd, , and M. D. King, 2005: Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res., 110, D10S20, doi:10.1029/2004JD005081.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., , K. Friedrich, , H. Morrison, , and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 45584580, doi:10.1175/JAS-D-14-0037.1.

    • Search Google Scholar
    • Export Citation
  • Koren, I., , G. Feingold, , and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, doi:10.5194/acp-10-8855-2010.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., , and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, doi:10.5194/acp-11-5407-2011.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , J. Feichter, , C. C. Chuang, , and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104, 9169–9198, doi:10.1029/1999JD900046.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Meoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malm, W. C., , J. F. Sisler, , D. Huffman, , R. A. Eldred, , and T. A. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99, 13471370, doi:10.1029/93JD02916.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., , and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 430 pp.

  • Meier, J., , I. Tegen, , B. Heinold, , and R. Wolke, 2012: Direct and semi‐direct radiative effects of absorbing aerosols in Europe: Results from a regional model. Geophys. Res. Lett., 39, L09802, doi:10.1029/2012GL050994.

    • Search Google Scholar
    • Export Citation
  • Min, Q. L., , R. Li, , B. Lin, , E. Joseph, , V. Morris, , Y. Hu, , S. W. Li, , and S. Wang, 2014: Impacts of mineral dust on ice clouds in tropical deep convection systems. Atmos. Res., 143, 6472, doi:10.1016/j.atmosres.2014.01.026.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2013: Response of tropical deep convection to localized heating perturbations: Implications for aerosol-induced convective invigoration. J. Atmos. Sci., 70, 35333555, doi:10.1175/JAS-D-13-027.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. Curry, , and V. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2013: Storm data and unusual weather phenomena. Accessed September 2016. [Available online at https://www.climate.gov/maps-data/dataset/storms-and-unusual-weather-phenomena-descriptions.]

  • NCEI, 2013: North American Model–Reanalysis, 6-hourly dataset. NOAA National Operational Model Archive & Distribution System, accessed July 2013. [Available online at http://nomads.ncdc.noaa.gov/data/namanl/201305/.]

  • Niyogi, D., and et al. , 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2007: WRF Working Group 13: Ensemble forecasting. Accessed 15 November 2015. [Available online at http://www.nssl.noaa.gov/users/stensrud/public_html/wg13/.]

  • Ntelekos, A. A., , J. A. Smith, , L. Donner, , J. D. Fast, , W. I. Gustafson, , E. G. Chapman, , and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 13671391, doi:10.1002/qj.476.

    • Search Google Scholar
    • Export Citation
  • Pereira, G., , R. Siqueira, , N. E. Rosário, , K. L. Longo, , S. R. Freitas, , F. S. Cardozo, , J. W. Kaiser, , and M. J. Wooster, 2016: Assessment of fire emissions inventories during the South American Biomass Burning Analysis (SAMBBA) experiment. Atmos. Chem. Phys., 16, 69616975, doi:10.5194/acp-16-6961-2016.

    • Search Google Scholar
    • Export Citation
  • Peters, K., , J. Quaas, , P. Stier, , and H. Graßl, 2014: Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data. Tellus, 66B, 24054, doi:10.3402/tellusb.v66.24054.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796, doi:10.1126/science.287.5459.1793.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , U. Lohmann, , G. B. Raga, , C. D. O’Dowd, , M. Kulmala, , S. Fuzzi, , A. Reissell, , and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and et al. , 2014: Global observations of aerosol–cloud–precipitation–climate interactions. Rev. Geophys., 52, 750808, doi:10.1002/2013RG000441.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saide, P. E., and et al. , 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956965, doi:10.1002/2014GL062826.

    • Search Google Scholar
    • Export Citation
  • Schell, B., , I. J. Ackermann, , H. Hass, , F. S. Binkowski, , and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28 27528 293, doi:10.1029/2001JD000384.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., , and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 2842–2858, doi:10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Schmid, P. E., , and D. Niyogi, 2013: Impact of city size on precipitation-modifying potential. Geophys. Res. Lett., 40, 52635267, doi:10.1002/grl.50656.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782, doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , C. Köhler, , and K. Beheng, 2012: Aerosol–cloud–precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, doi:10.5194/acp-12-709-2012.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact., 7, doi:10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stockwell, W. R., , P. Middleton, , J. S. Chang, , and X. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16 343–16 367, doi:10.1029/JD095iD10p16343.

    • Search Google Scholar
    • Export Citation
  • Storer, R., , S. Heever, , and T. L’Ecuyer, 2014: Observations of aerosol‐induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, doi:10.1002/2013JD020272.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , J.-P. Chen, , Z. Li, , C. Wang, , and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , R. Edwards, , J. A. Hart, , K. L. Elmore, , and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • UCAR, 2015: Image Archive: Meteorological case study selection kit. Accessed 3 March 2015. [Available online at http://www2.mmm.ucar.edu/imagearchive/.]

  • U.S. Census Bureau, 2013: U.S. Census Bureau Factfinder. Accessed May 2015. [Available online at http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.]

  • Van den Heever, S. C., , and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, doi:10.1175/JAM2492.1.

    • Search Google Scholar
    • Export Citation
  • Van den Heever, S. C., , G. G. Carrió, , W. R. Cotton, , P. J. DeMott, , and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, doi:10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , W. C. Skamarock, , and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., and et al. , 2011: Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem. Atmos. Chem. Phys., 11, 11 95111 975, doi:10.5194/acp-11-11951-2011.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , X. Liu, , L. R. Leung, , B. Johnson, , S. A. McFarlane, , W. I. Gustafson, , J. D. Fast, , and R. Easter, 2010: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos. Chem. Phys., 10, 88218838, doi:10.5194/acp-10-8821-2010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 9
PDF Downloads 44 44 11

Effects of Urban Plume Aerosols on a Mesoscale Convective System

View More View Less
  • 1 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
  • | 2 Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, South Dakota
  • | 3 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
© Get Permissions
Restricted access

Abstract

This study examines the effects of urban aerosols on a mesoscale convective system (MCS) in the central Great Plains with the Weather Research and Forecasting Model coupled with chemistry (WRF-Chem). Urban emissions from Kansas City, Missouri, were scaled by factors of 0.5, 1.0, and 2.0 to investigate the impact of urban aerosol load on MCS propagation and strength. The first half of the storm development is characterized by a stationary front to the north of Kansas City (phase I; 1800 UTC 26 May–0600 UTC 27 May), which develops into a squall line south of the urban area (phase II; 0600–1800 UTC 27 May). During phase I, doubling urban emissions shifts the precipitation accumulation, with enhancement downwind of the storm propagation and suppression upwind. During phase II, a squall line develops in the baseline and doubled emissions scenarios but not when emissions are halved. These changes in MCS propagation and strength are a function of cold pool strength, which is determined by microphysical processes and directly influenced by aerosol load. Overall, changes in urban emissions drive changes in cloud microphysics, which trigger large-scale changes in storm morphology and precipitation patterns. These results show that urban emissions can play an important role in mesoscale weather systems.

Corresponding author address: Stacey Kawecki, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: slekaw@umich.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

This study examines the effects of urban aerosols on a mesoscale convective system (MCS) in the central Great Plains with the Weather Research and Forecasting Model coupled with chemistry (WRF-Chem). Urban emissions from Kansas City, Missouri, were scaled by factors of 0.5, 1.0, and 2.0 to investigate the impact of urban aerosol load on MCS propagation and strength. The first half of the storm development is characterized by a stationary front to the north of Kansas City (phase I; 1800 UTC 26 May–0600 UTC 27 May), which develops into a squall line south of the urban area (phase II; 0600–1800 UTC 27 May). During phase I, doubling urban emissions shifts the precipitation accumulation, with enhancement downwind of the storm propagation and suppression upwind. During phase II, a squall line develops in the baseline and doubled emissions scenarios but not when emissions are halved. These changes in MCS propagation and strength are a function of cold pool strength, which is determined by microphysical processes and directly influenced by aerosol load. Overall, changes in urban emissions drive changes in cloud microphysics, which trigger large-scale changes in storm morphology and precipitation patterns. These results show that urban emissions can play an important role in mesoscale weather systems.

Corresponding author address: Stacey Kawecki, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: slekaw@umich.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Save