• Babiano, A., , C. Basdevant, , and R. Sadourny, 1985: Structure functions and dispersion laws in two-dimensional turbulence. J. Atmos. Sci., 42, 941949, doi:10.1175/1520-0469(1985)042<0941:SFADLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , S. D. Eckermann, , P. A. Newman, , L. Lait, , K. R. Chan, , M. Loewenstein, , M. H. Proffitt, , and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, doi:10.1029/95JD03835.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, doi:10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Bierdel, L., , C. Snyder, , S.-H. Park, , and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight-track winds. J. Atmos. Sci., 73, 32733286, doi:10.1175/JAS-D-16-0040.1.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , J. Callies, , and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, doi:10.1017/jfm.2014.488.

    • Search Google Scholar
    • Export Citation
  • Callies, J., , R. Ferrari, , and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, doi:10.1073/pnas.1410772111.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, doi:10.1126/science.204.4395.832.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, doi:10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , Y. O. Takahashi, , and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, doi:10.1017/S0022112005008128.

  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, doi:10.1017/jfm.2014.685.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., , and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, doi:10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , D. C. Fritts, , and K. S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44, 30873096, doi:10.1175/1520-0469(1987)044<3087:AIOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and et al. , 2010: The Stratosphere–Troposphere Analyses of Regional Transport 2008 experiment. Bull. Amer. Meteor. Soc., 91, 327342, doi:10.1175/2009BAMS2865.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , S.-H. Park, , J. B. Klemp, , and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, doi:10.1175/JAS-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., , and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, doi:10.1073/pnas.0605494103.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , G. J. Shutts, , and M. E. B. Gray, 1997: Balanced mesoscale motion and stratified turbulence forced by convection. Quart. J. Roy. Meteor. Soc., 123, 16211652, doi:10.1002/qj.49712354209.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, doi:10.1029/GL009i005p00575.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , J. Wei, , M. Zhang, , K. P. Bowman, , L. L. Pan, , E. Atlas, , and S. C. Wofsy, 2015: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment. Atmos. Chem. Phys., 15, 76677684, doi:10.5194/acp-15-7667-2015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 8
PDF Downloads 68 68 7

The Dynamics of Mesoscale Winds in the Upper Troposphere and Lower Stratosphere

View More View Less
  • 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 3 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Spectral analysis is applied to infer the dynamics of mesoscale winds from aircraft observations in the upper troposphere and lower stratosphere. Two datasets are analyzed: one collected aboard commercial aircraft and one collected using a dedicated research aircraft. A recently developed wave–vortex decomposition is used to test the observations’ consistency with linear inertia–gravity wave dynamics. The decomposition method is shown to be robust in the vicinity of the tropopause if flight tracks vary sufficiently in altitude. For the lower stratosphere, the decompositions of both datasets confirm a recent result that mesoscale winds are consistent with the polarization and dispersion relations of inertia–gravity waves. For the upper troposphere, however, the two datasets disagree: only the research aircraft data indicate consistency with linear wave dynamics at mesoscales. The source of the inconsistency is a difference in mesoscale variance of the measured along-track wind component. To further test the observed flow’s consistency with linear wave dynamics, the ratio between tropospheric and stratospheric mesoscale energy levels is compared to a simple model of upward-propagating waves that are partially reflected at the tropopause. For both datasets, the observed energy ratio is roughly consistent with the simple wave model, but wave frequencies diagnosed from the data draw into question the applicability of the monochromatic theory at wavelengths smaller than 10 km.

Corresponding author address: Jörn Callies, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg. 54-1615, Cambridge, MA 02139. E-mail: joernc@mit.edu

Abstract

Spectral analysis is applied to infer the dynamics of mesoscale winds from aircraft observations in the upper troposphere and lower stratosphere. Two datasets are analyzed: one collected aboard commercial aircraft and one collected using a dedicated research aircraft. A recently developed wave–vortex decomposition is used to test the observations’ consistency with linear inertia–gravity wave dynamics. The decomposition method is shown to be robust in the vicinity of the tropopause if flight tracks vary sufficiently in altitude. For the lower stratosphere, the decompositions of both datasets confirm a recent result that mesoscale winds are consistent with the polarization and dispersion relations of inertia–gravity waves. For the upper troposphere, however, the two datasets disagree: only the research aircraft data indicate consistency with linear wave dynamics at mesoscales. The source of the inconsistency is a difference in mesoscale variance of the measured along-track wind component. To further test the observed flow’s consistency with linear wave dynamics, the ratio between tropospheric and stratospheric mesoscale energy levels is compared to a simple model of upward-propagating waves that are partially reflected at the tropopause. For both datasets, the observed energy ratio is roughly consistent with the simple wave model, but wave frequencies diagnosed from the data draw into question the applicability of the monochromatic theory at wavelengths smaller than 10 km.

Corresponding author address: Jörn Callies, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg. 54-1615, Cambridge, MA 02139. E-mail: joernc@mit.edu
Save