• Auriol, F., , J.-F. Gayet, , G. Febvre, , O. Jourdan, , L. Labonnote, , and G. Brogniez, 2001: In situ observations of cirrus cloud scattering phase function with 22 and 46 halos: Cloud field study on 19 February 1998. J. Atmos. Sci., 58, 33763390, doi:10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. Yang, , A. J. Heymsfield, , C. G. Schmitt, , Y. Xie, , A. Bansemer, , Y.-X. Hu, , and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. Yang, , A. J. Heymsfield, , A. Bansemer, , B. H. Cole, , A. Merrelli, , C. Schmitt, , and C. Wang, 2014: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139, doi:10.1016/j.jqsrt.2014.02.029.

    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., , and B. Dubrulle, 2004: Horizontally oriented plates in clouds. J. Atmos. Sci., 61, 28882898, doi:10.1175/JAS-3309.1.

  • Cho, H.-R., , J. V. Iribarne, , and W. G. Richards, 1981: On the orientation of ice crystals in a cumulonimbus cloud. J. Atmos. Sci., 38, 11111114, doi:10.1175/1520-0469(1981)038<1111:OTOOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, B. H., , P. Yang, , B. A. Baum, , J. Riedi, , and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 37393750, doi:10.5194/acp-14-3739-2014.

    • Search Google Scholar
    • Export Citation
  • Cotton, R., , S. Osborne, , Z. Ulanowski, , E. Hirst, , P. H. Kaye, , and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. Wood, , P. R. A. Brown, , P. H. Kaye, , E. Hirst, , and R. Greeaway, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., , G. Mioche, , V. Shcherbakov, , C. Gourbeyre, , R. Busen, , and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: A case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 25372544, doi:10.5194/acp-11-2537-2011.

    • Search Google Scholar
    • Export Citation
  • Haralick, R. M., , K. Shanmugam, , and I. Dinstein, 1973: Textural features for image classification. IEEE Trans. Syst. Man Cybern., 3, 610621, doi:10.1109/TSMC.1973.4309314.

    • Search Google Scholar
    • Export Citation
  • Järvinen, E., and et al. , 2016: Quasi-spherical ice in convective clouds. J. Atmos. Sci., 73, 38853910, doi:10.1175/JAS-D-15-0365.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., , R. P. Lawson, , J. W. Bergman, , L. Pfister, , T. P. Bui, , and C. G. Schmitt, 2013: Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. J. Geophys. Res. Atmos., 118, 53485360, doi:10.1002/jgrd.50421.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., , S. Lasher-Trapp, , A. Bansemer, , Z. Ulanowski, , and A. J. Heymsfield, 2014: Difficulties in early ice detection with the Small Ice Detector-2 HIAPER (SID-2H) in maritime cumuli. J. Atmos. Oceanic Technol., 31, 12631275, doi:10.1175/JTECH-D-13-00079.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, doi:10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , G. A. Isaac, , and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , E. F. Emery, , J. W. Strapp, , S. G. Cober, , G. A. Isaac, , M. Wasey, , and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , C. G. Schmitt, , and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. Pilson, , B. Baker, , Q. Mo, , E. Jensen, , L. Pfister, , and P. Bui, 2008: Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer. Atmos. Chem. Phys., 8, 16091620, doi:10.5194/acp-8-1609-2008.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, R. S., , G. Y. Tian, , D. Gledhill, , and S. Ward, 2006: Grinding surface roughness measurement based on the co-occurrence matrix of speckle pattern texture. Appl. Opt., 45, 88398847, doi:10.1364/AO.45.008839.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., , K. Sassen, , D. O’C. Starr, , and G. Stephens, Eds., 2002: Cirrus. Oxford University Press, 480 pp.

  • Mitchell, D. L., , A. Macke, , and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 29672988, doi:10.1175/1520-0469(1996)053<2967:MCCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neshyba, S. P., , B. Lowen, , M. Benning, , A. Lawson, , and P. M. Rowe, 2013: Roughness metrics for prismatic facets of ice. J. Geophys. Res. Atmos., 118, 33093318, doi:10.1002/jgrd.50357.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., , and A. J. Heymsfield, 2014: Observational justification and quantification of the separation of cloud ice and snow. Geophys. Res. Lett., 41, 13011307, doi:10.1002/2013GL058781.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., , J. Iaquinta, , and A. J. Heymsfield, 2006: The asymmetry parameter of cirrus clouds composed of hollow bullet rosette–shaped ice crystals from ray-tracing calculations. J. Appl. Meteor. Climatol., 45, 973981, doi:10.1175/JAM2384.1.

    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and et al. , 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Search Google Scholar
    • Export Citation
  • Shcherbakov, V., , J.-F. Gayet, , B. A. Baker, , and R. P. Lawson, 2006: Light scattering by single natural ice crystals. J. Atmos. Sci., 63, 15131525, doi:10.1175/JAS3690.1.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., , E. Hesse, , P. H. Kaye, , and A. J. Baran, 2006: Light scattering by complex ice analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392, doi:10.1016/j.jqsrt.2005.11.052.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., , E. Hirst, , P. H. Kaye, , and R. Greenaway, 2012: Retrieving the size of particle with rough and complex surfaces from two-dimensional scattering patterns. J. Quant. Spectrosc. Radiat. Transfer, 113, 24572464, doi:10.1016/j.jqsrt.2012.06.019.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., , P. H. Kaye, , E. Hirst, , R. S. Greenaway, , R. J. Cotton, , E. Hesse, , and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 16491662, doi:10.5194/acp-14-1649-2014.

    • Search Google Scholar
    • Export Citation
  • Um, J., , and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Search Google Scholar
    • Export Citation
  • Vochezer, P., , E. Järvinen, , R. Wagner, , P. Kupiszewski, , T. Leisner, , and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the small ice detector and the particle phase discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12, 170184, doi:10.1175/1520-0442-12.1.170.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., , P. Yang, , G. W. Kattawar, , B. A. Baum, , and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl. Opt., 50, 10651081, doi:10.1364/AO.50.001065.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , G. W. Kattawar, , G. Hong, , P. Minnis, , and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrievals of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957, doi:10.1109/TGRS.2008.916472.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 8
PDF Downloads 30 30 5

The Microphysical Properties of Small Ice Particles Measured by the Small Ice Detector-3 Probe during the MACPEX Field Campaign

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 3 Texas A&M University, College Station, Texas
  • | 4 University of Hertfordshire, Hertfordshire, United Kingdom
© Get Permissions
Restricted access

Abstract

A reliable understanding of the microphysical properties of ice particles in atmospheric clouds is critical for assessing cloud radiative forcing effects in climate studies. Ice particle microphysical properties such as size, shape, and surface roughness all have substantial effects on the single-scattering characteristics of the particles. A recently developed ice particle probe, the Small Ice Detector-3 (SID-3), measures the two-dimensional near-forward light-scattering patterns of sampled ice particles. These scattering patterns provide a wealth of information for understanding the microphysical and radiative characteristics of ice particles. The SID-3 was operated successfully on 12 aircraft flights during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) field campaign in April 2011. In this study, SID-3 measurements are used to investigate the frequency of occurrence of a number of ice particle properties observed during MACPEX. Individual scattering patterns (7.5°–23°) are used to infer properties of the observed particles as well as to calculate partial scattering functions (PSFs) for ensembles of particles in the measured size range (~5–100 μm). PSFs are compared to ray-tracing-based phase functions to infer additional properties of the particles. Two quantitative values—halo ratio and steepness ratio—are used to characterize PSFs. The MACPEX dataset suggests that most atmospheric ice particles have rough surfaces or are complex in nature. PSFs calculated for particles that were characterized as having smooth surfaces also appeared to more closely resemble rough crystal PSFs. PSFs measured with SID-3 compare well with those calculated for droxtals with rough surfaces.

Corresponding author address: Carl G. Schmitt, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: schmittc@ucar.edu

Abstract

A reliable understanding of the microphysical properties of ice particles in atmospheric clouds is critical for assessing cloud radiative forcing effects in climate studies. Ice particle microphysical properties such as size, shape, and surface roughness all have substantial effects on the single-scattering characteristics of the particles. A recently developed ice particle probe, the Small Ice Detector-3 (SID-3), measures the two-dimensional near-forward light-scattering patterns of sampled ice particles. These scattering patterns provide a wealth of information for understanding the microphysical and radiative characteristics of ice particles. The SID-3 was operated successfully on 12 aircraft flights during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) field campaign in April 2011. In this study, SID-3 measurements are used to investigate the frequency of occurrence of a number of ice particle properties observed during MACPEX. Individual scattering patterns (7.5°–23°) are used to infer properties of the observed particles as well as to calculate partial scattering functions (PSFs) for ensembles of particles in the measured size range (~5–100 μm). PSFs are compared to ray-tracing-based phase functions to infer additional properties of the particles. Two quantitative values—halo ratio and steepness ratio—are used to characterize PSFs. The MACPEX dataset suggests that most atmospheric ice particles have rough surfaces or are complex in nature. PSFs calculated for particles that were characterized as having smooth surfaces also appeared to more closely resemble rough crystal PSFs. PSFs measured with SID-3 compare well with those calculated for droxtals with rough surfaces.

Corresponding author address: Carl G. Schmitt, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: schmittc@ucar.edu
Save