• Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Ando, H., , T. Imamura, , and T. Tsuda, 2012: Vertical wavenumber spectra of gravity waves in the Martian atmosphere obtained from Mars Global Surveyor radio occultation data. J. Atmos. Sci., 69, 29062912, doi:10.1175/JAS-D-11-0339.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , S. R. Lewis, , and P. Read, 1997: Gravity wave drag in a global circulation model of the Martian atmosphere: Parameterization and validation. Adv. Space Res., 19, 12451254, doi:10.1016/S0273-1177(97)00277-9.

    • Search Google Scholar
    • Export Citation
  • Creasey, J. E., , J. M. Forbes, , and D. P. Hinson, 2006: Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , L. Wang, , and R. H. Tolson, 2006: Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities. J. Geophys. Res., 111, A12304, doi:10.1029/2006JA011897.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and et al. , 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • González-Galindo, F., , F. Forget, , M. A. López-Valverde, , M. Angelats i Coll, , and E. Millour, 2009: A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res., 114, E04001, doi:10.1029/2008JE003246.

    • Search Google Scholar
    • Export Citation
  • Haider, S. A., , I. S. Batista, , M. A. Abdu, , P. Muralikrishna, , S. Y. Shah, , and T. Kuroda, 2015: Dust storm and electron density in the equatorial D region ionosphere of Mars: Comparison with Earth’s ionosphere from rocket measurements in Brazil. J. Geophys. Res. Space Phys., 120, 89688977, doi:10.1002/2015JA021630.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., , and S. Emori, Eds., 2004: K-1 coupled GCM (MIROC) description. University of Tokyo K-1 Tech. Rep. 1, 38 pp.

  • Imamura, T., , A. Watanabe, , and Y. Maejima, 2016: Convective generation and vertical propagation of fast gravity waves on Mars: One- and two-dimensional modeling. Icarus, 267, 5163, doi:10.1016/j.icarus.2015.12.005.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., , B. A. Boville, , K. Hamilton, , E. Manzini, , and K. Shibata, 1999: Kinetic energy spectrum of horizontal motions in middle-atmosphere models. J. Geophys. Res., 104, 27 17727 190, doi:10.1029/1999JD900814.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , N. Hashimoto, , D. Sakai, , and M. Takahashi, 2005: Simulation of the Martian atmosphere using a CCSR/NIES AGCM. J. Meteor. Soc. Japan, 83, 119, doi:10.2151/jmsj.83.1.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , A. S. Medvedev, , P. Hartogh, , and M. Takahashi, 2007: Seasonal changes of the baroclinic wave activity in the northern hemisphere of Mars simulated with a GCM. Geophys. Res. Lett., 34, L09203, doi:10.1029/2006GL028816.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , A. S. Medvedev, , P. Hartogh, , and M. Takahashi, 2008: Semiannual oscillations in the atmosphere of Mars. Geophys. Res. Lett., 35, L23202, doi:10.1029/2008GL036061.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , A. S. Medvedev, , P. Hartogh, , and M. Takahash, 2009: On forcing the winter polar warmings in the Martian middle atmosphere during dust storms. J. Meteor. Soc. Japan, 87, 913921, doi:10.2151/jmsj.87.913.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , A. S. Medvedev, , Y. Kasaba, , and P. Hartogh, 2013: Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars. Geophys. Res. Lett., 40, 14841488, doi:10.1002/grl.50326.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., , A. S. Medvedev, , E. Yiğit, , and P. Hartogh, 2015: A global view of gravity waves in the Martian atmosphere inferred from a high-resolution general circulation model. Geophys. Res. Lett., 42, 92139222, doi:10.1002/2015GL066332.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , and G. P. Klaassen, 2000: Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: Basic formulation and sensitivity tests. J. Atmos. Sol.-Terr. Phys., 62, 10151033, doi:10.1016/S1364-6826(00)00067-5.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , and E. Yiğit, 2012: Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophys. Res. Lett., 39, L05201, doi:10.1029/2012GL050852.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , E. Yiğit, , and P. Hartogh, 2011a: Estimates of gravity wave drag on Mars: Indication of a possible lower thermosphere wind reversal. Icarus, 211, 909912, doi:10.1016/j.icarus.2010.10.013.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , E. Yiğit, , P. Hartogh, , and E. Becker, 2011b: Influence of gravity waves on the Martian atmosphere: General circulation modeling. J. Geophys. Res., 116, E10004, doi:10.1029/2011JE003848.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , E. Yiğit, , T. Kuroda, , and P. Hartogh, 2013: General circulation modeling of the Martian upper atmosphere during global dust storms. J. Geophys. Res. Planets, 118, 22342246, doi:10.1002/2013JE004429.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , F. González-Galindo, , E. Yiğit, , A. G. Feofilov, , F. Forget, , and P. Hartogh, 2015: Cooling of the Martian thermosphere by CO2 radiation and gravity waves: An intercomparison study with two general circulation models. J. Geophys. Res. Planets, 120, 913927, doi:10.1002/2015JE004802.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, Y., , J. M. Forbes, , and Y. Moudden, 2011: A new perspective on gravity waves in the Martian atmosphere: Sources and features. J. Geophys. Res., 116, doi:10.1029/2011JE003800.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, Y., , H. Fujiwara, , H. Jin, , and H. Shinagawa, 2014: A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res. Space Phys., 119, 58075820, doi:10.1002/2014JA019848.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , M. Tsukamoto, , Y. Tsushima, , A. Numaguti, , and T. Kimura, 2000: Modeling of the radiative processes in an atmospheric general circulation model. Appl. Opt., 39, 48694878, doi:10.1364/AO.39.004869.

    • Search Google Scholar
    • Export Citation
  • Noguchi, K., , S. Ikeda, , T. Kuroda, , S. Tellmann, , and M. Pätzold, 2014: Estimation of changes in the composition of the Martian atmosphere caused by CO2 condensation from GRS Ar measurements and its application to the rederivation of MGS radio occultation measurements. J. Geophys. Res. Planets, 119, 25102521, doi:10.1002/2014JE004629.

    • Search Google Scholar
    • Export Citation
  • Parish, H. F., , G. Schubert, , M. P. Hickey, , and R. L. Walterscheid, 2009: Propagation of tropospheric gravity waves into the upper atmosphere of Mars. Icarus, 203, 2837, doi:10.1016/j.icarus.2009.04.031.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., and et al. , 2012: MIROC4h—A new high-resolution atmosphere–ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, doi:10.2151/jmsj.2012-301.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Tateno, , S. Watanabe, , and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, doi:10.1175/JAS-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Tellmann, S., , M. Paetzold, , B. Haeusler, , D. P. Hinson, , and G. L. Tyler, 2013: The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements. J. Geophys. Res. Planets, 118, 306320, doi:10.1002/jgre.20058.

    • Search Google Scholar
    • Export Citation
  • Wright, C. J., 2012: A one-year seasonal analysis of Martian gravity waves using MCS data. Icarus, 219, 274282, doi:10.1016/j.icarus.2012.03.004.

    • Search Google Scholar
    • Export Citation
  • Yamashita, Y., , T. Kuroda, , and M. Takahashi, 2007: Maintenance of zonal wind variability associated with the annular mode on Mars. Geophys. Res. Lett., 34, L16819, doi:10.1029/2007GL030069.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , and A. S. Medvedev, 2009: Heating and cooling of the thermosphere by internal gravity waves. Geophys. Res. Lett., 36, L14807, doi:10.1029/2009GL038507.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , and A. S. Medvedev, 2015: Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res., 55, 9831003, doi:10.1016/j.asr.2014.11.020.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , A. D. Aylward, , and A. S. Medvedev, 2008: Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , A. S. Medvedev, , A. D. Aylward, , P. Hartogh, , and M. J. Harris, 2009: Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J. Geophys. Res., 114, D07101, doi:10.1029/2008JD011132.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , S. L. England, , G. Liu, , A. S. Medvedev, , P. R. Mahaffy, , T. Kuroda, , and B. M. Jakosky, 2015a: High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophys. Res. Lett., 42, 89939000, doi:10.1002/2015GL065307.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., , A. S. Medvedev, , and P. Hartogh, 2015b: Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere. Geophys. Res. Lett., 42, 42944300, doi:10.1002/2015GL064275.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 2
PDF Downloads 19 19 1

Global Distribution of Gravity Wave Sources and Fields in the Martian Atmosphere during Equinox and Solstice Inferred from a High-Resolution General Circulation Model

View More View Less
  • 1 National Institute of Information and Communications Technology, Koganei, and Department of Geophysics, Tohoku University, Sendai, Japan, and Max Planck Institute for Solar System Research, Göttingen, Germany
  • | 2 Max Planck Institute for Solar System Research, and Institute of Astrophysics, Georg-August University, Göttingen, Germany
  • | 3 Space Weather Group, Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, and Max Planck Institute for Solar System Research, Göttingen, Germany
  • | 4 Max Planck Institute for Solar System Research, Göttingen, Germany
© Get Permissions
Restricted access

Abstract

Results of simulations with a new high-resolution Martian general circulation model (MGCM) (T106 spectral resolution, or ~67-km horizontal grid size) have been analyzed to reveal global distributions of gravity waves (GWs) during the solstice and equinox periods. They show that shorter-scale harmonics progressively dominate with height, and the body force per unit mass (drag) they impose on the larger-scale flow increases. Mean magnitudes of the drag in the middle atmosphere are tens of meters per second per sol, while instantaneously they can reach thousands of meters per second per sol. Inclusion of small-scale GW harmonics results in an attenuation of the wind jets in the middle atmosphere and in the tendency of their reversal. GW energy in the troposphere due to the shortest-scale harmonics is concentrated in the low latitudes for both seasons and is in a good agreement with observations. The vertical fluxes of wave horizontal momentum are directed mainly against the larger-scale wind. Orographically generated GWs contribute significantly to the total energy of small-scale disturbances and to the drag created by the latter. These waves strongly decay with height, and thus the nonorographic GWs of tropospheric origin dominate near the mesopause. The results of this study can be used to better constrain and validate GW parameterizations in MGCMs.

Corresponding author address: Takeshi Kuroda, National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. E-mail: tkuroda@nict.go.jp

Abstract

Results of simulations with a new high-resolution Martian general circulation model (MGCM) (T106 spectral resolution, or ~67-km horizontal grid size) have been analyzed to reveal global distributions of gravity waves (GWs) during the solstice and equinox periods. They show that shorter-scale harmonics progressively dominate with height, and the body force per unit mass (drag) they impose on the larger-scale flow increases. Mean magnitudes of the drag in the middle atmosphere are tens of meters per second per sol, while instantaneously they can reach thousands of meters per second per sol. Inclusion of small-scale GW harmonics results in an attenuation of the wind jets in the middle atmosphere and in the tendency of their reversal. GW energy in the troposphere due to the shortest-scale harmonics is concentrated in the low latitudes for both seasons and is in a good agreement with observations. The vertical fluxes of wave horizontal momentum are directed mainly against the larger-scale wind. Orographically generated GWs contribute significantly to the total energy of small-scale disturbances and to the drag created by the latter. These waves strongly decay with height, and thus the nonorographic GWs of tropospheric origin dominate near the mesopause. The results of this study can be used to better constrain and validate GW parameterizations in MGCMs.

Corresponding author address: Takeshi Kuroda, National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. E-mail: tkuroda@nict.go.jp
Save