• Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abalos, M., B. Legras, and E. Shuckburgh, 2016: Interannual variability in effective diffusivity in the upper troposphere/lower stratosphere from reanalysis data. Quart. J. Roy. Meteor. Soc., 142, 18471861, doi:10.1002/qj.2779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albers, J. R., G. N. Kiladis, T. Birner, and J. Dias, 2016: Tropical upper-tropospheric potential vorticity intrusions during sudden stratospheric warmings. J. Atmos. Sci., 73, 23612384, doi:10.1175/JAS-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, D. R., and N. Nakamura, 2001: A seasonal climatology of effective diffusivity in the stratosphere. J. Geophys. Res., 106, 79177935, doi:10.1029/2000JD900717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, doi:10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. W. J. Thompson, 2014: Comparing the roles of barotropic versus baroclinic feedbacks in the atmosphere’s response to mechanical forcing. J. Atmos. Sci., 71, 177194, doi:10.1175/JAS-D-13-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., D. W. J. Thompson, and T. G. Shepherd, 2013: Up-gradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett., 40, 59885993, doi:10.1002/2013GL057728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bönisch, H., A. Engel, J. Curtius, T. Birner, and P. Hoor, 2009: Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2. Atmos. Chem. Phys., 9, 59055919, doi:10.5194/acp-9-5905-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and G. D. Carrie, 2002: The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci., 59, 15021514, doi:10.1175/1520-0469(2002)059<1502:TMMTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196, doi:10.1175/2009JAS3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. I. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and A. Plumb, 2014: Effective isentropic diffusivity of tropospheric transport. J. Atmos. Sci., 71, 34993520, doi:10.1175/JAS-D-13-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, doi:10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, doi:10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., 1991: Parameterization of planetary wave breaking in the middle atmosphere. J. Atmos. Sci., 48, 14051419, doi:10.1175/1520-0469(1991)048<1405:POPWBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Gille, J., S. Karol, D. Kinnison, J.-F. Lamarque, and V. Yudin, 2014: The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes. J. Geophys. Res. Atmos., 119, 95789595, doi:10.1002/2013JD021416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000a: Effective diffusivity as a diagnostic of atmospheric transport: 1. Stratosphere. J. Geophys. Res., 105, 22 77722 794, doi:10.1029/2000JD900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000b: Effective diffusivity as a diagnostic of atmospheric transport: 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 79522 810, doi:10.1029/2000JD900092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and T. G. Shepherd, 2007: O3–N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere. J. Geophys. Res., 112, D19301, doi:10.1029/2006JD008281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, doi:10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2013: Rossby wave breaking and transport between the tropics and extratropics above the subtropical jet. J. Atmos. Sci., 70, 607626, doi:10.1175/JAS-D-12-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61, 10551067, doi:10.1175/1520-0469(2004)061<1055:TWMFII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konopka, P., J.-U. Grooß, G. Günther, F. Ploeger, R. Pommrich, R. Müller, and N. Livesey, 2010: Annual cycle of ozone at and above the tropical tropopause: Observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos. Chem. Phys., 10, 121132, doi:10.5194/acp-10-121-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593599, doi:10.1038/305593a0.

  • Nakamura, N., 2008: Quantifying inhomogeneous, instantaneous, irreversible transport using passive tracer field as a coordinate. Transport and Mixing in Geophysical Flows, J. B. Weiss and A. Provenzale, Eds., Lecture Notes in Physics, Vol. 744, Springer, 137–164, doi:10.1007/978-3-540-75215-8_7.

    • Crossref
    • Export Citation
  • Ploeger, F., and et al. , 2013: Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer. J. Geophys. Res. Atmos., 118, 81118127, doi:10.1002/jgrd.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1996: A “tropical pipe” model of stratospheric transport. J. Geophys. Res., 101, 39573972, doi:10.1029/95JD03002.

  • Plumb, R. A., and J. D. Mahlman, 1987: The zonally averaged transport characteristics of the GFDL general circulation/transport model. J. Atmos. Sci., 44, 298327, doi:10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595, doi:10.1175/2008JAS2756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riese, M., F. Ploeger, A. Rap, B. Vogel, P. Konopka, M. Dameris, and P. Forster, 2012: Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res., 117, D16305, doi:10.1029/2012JD017751.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, doi:10.1175/2010JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15, 33423357, doi:10.1063/1.1610471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., W. Norton, A. Iwi, and P. Haynes, 2001: Influence of the quasi-biennial oscillation on isentropic transport and mixing in the tropics and subtropics. J. Geophys. Res., 106, 14 32714 337, doi:10.1029/2000JD900664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43, 26002618, doi:10.1175/1520-0469(1986)043<2600:NTOZAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R. E., and K. P. Bowman, 2000: Wavebreaking and mixing in the Northern Hemisphere summer stratosphere. J. Geophys. Res., 105, 24 79924 807, doi:10.1029/2000JD900320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 17511762, doi:10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and R. A. Plumb, 1994: Contour advection with surgery: A technique for investigating finescale structure in tracer transport. J. Atmos. Sci., 51, 530540, doi:10.1175/1520-0469(1994)051<0530:CAWSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 38573860, doi:10.1029/2000GL012250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., R. A. Plumb, and L. M. Polvani, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a tropical surf zone and its effect on interhemispheric propagation. J. Atmos. Sci., 51, 14011416, doi:10.1175/1520-0469(1994)051<1401:NBRTAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, doi:10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO—How does 1997/98 rank? Weather, 53, 315324, doi:10.1002/j.1477-8696.1998.tb06408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 13
PDF Downloads 47 47 7

Phase-speed Spectra of Eddy Tracer Fluxes Linked to Isentropic Stirring and Mixing in the Upper Troposphere and Lower Stratosphere

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The regions around the subtropical jets in the upper troposphere and lower stratosphere (UTLS) are characterized by strong isentropic stirring and mixing. In this work, the wave spectrum of the associated eddy tracer fluxes is examined using an artificial passive tracer advected on isentropes by the two-dimensional flow. The eddy diffusivity computed from the flux–gradient relation captures the main features of the mixing structure. Eddy transport in the UTLS is strongest in the summer hemisphere, and weak eddy fluxes are found at the core and poleward of the subtropical jets, especially in the winter hemisphere. There is an important contribution of stationary planetary equatorial Rossby waves in the tropical upper troposphere. The transient eddy tracer transport is primarily linked to medium-scale waves (wavenumbers ~4–7) breaking in the regions of weak westerlies around the subtropical jets and to planetary-scale waves at high latitudes. Phase-speed spectra for transient eddy fluxes show a close relationship of waves to the background zonal wind. In the deep tropics, traveling equatorial and Rossby waves of extratropical origin lead to cross-equatorial tracer transport throughout the upper troposphere. Interannual changes show that eddy tracer fluxes closely follow the shifts in the zonal winds associated with El Niño–Southern Oscillation and the quasi-biennial oscillation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Marta Abalos, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: abalos@ucar.edu

Abstract

The regions around the subtropical jets in the upper troposphere and lower stratosphere (UTLS) are characterized by strong isentropic stirring and mixing. In this work, the wave spectrum of the associated eddy tracer fluxes is examined using an artificial passive tracer advected on isentropes by the two-dimensional flow. The eddy diffusivity computed from the flux–gradient relation captures the main features of the mixing structure. Eddy transport in the UTLS is strongest in the summer hemisphere, and weak eddy fluxes are found at the core and poleward of the subtropical jets, especially in the winter hemisphere. There is an important contribution of stationary planetary equatorial Rossby waves in the tropical upper troposphere. The transient eddy tracer transport is primarily linked to medium-scale waves (wavenumbers ~4–7) breaking in the regions of weak westerlies around the subtropical jets and to planetary-scale waves at high latitudes. Phase-speed spectra for transient eddy fluxes show a close relationship of waves to the background zonal wind. In the deep tropics, traveling equatorial and Rossby waves of extratropical origin lead to cross-equatorial tracer transport throughout the upper troposphere. Interannual changes show that eddy tracer fluxes closely follow the shifts in the zonal winds associated with El Niño–Southern Oscillation and the quasi-biennial oscillation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Marta Abalos, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: abalos@ucar.edu
Save