• Abramov, R. V., , and A. J. Majda, 2012: Low-frequency climate response of quasigeostrophic wind-driven ocean circulation. J. Phys. Oceanogr., 42, 243260, doi:10.1175/JPO-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , J. Kay, , and K. Shell, 2012: The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Climate, 25, 14531469, doi:10.1175/JCLI-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Gritsun, A., , and G. Branstator, 2007: Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J. Atmos. Sci., 64, 25582575, doi:10.1175/JAS3943.1.

    • Search Google Scholar
    • Export Citation
  • Gritsun, A., , G. Branstator, , and A. Majda, 2008: Climate response of linear and quadratic functionals using the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 28242841, doi:10.1175/2007JAS2496.1.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., , and A. J. Majda, 2013: Efficient stochastic superparameterization for geophysical turbulence. Proc. Natl. Acad. Sci. USA, 110, 44644469, doi:10.1073/pnas.1302548110.

    • Search Google Scholar
    • Export Citation
  • Harlim, J., , and A. J. Majda, 2010: Filtering turbulent sparsely observed geophysical flows. Mon. Wea. Rev., 138, 10501083, doi:10.1175/2009MWR3113.1.

    • Search Google Scholar
    • Export Citation
  • Kullback, S., , and R. A. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, doi:10.1214/aoms/1177729694.

  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026, doi:10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2011: Uncertainty generation in deterministic flows: Theory and application with an atmospheric jet stream model. Dyn. Atmos. Oceans, 52, 5179, doi:10.1016/j.dynatmoce.2011.03.003.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2014: Entropy evolution and uncertainty estimation with dynamical systems. Entropy, 16, 36053634, doi:10.3390/e16073605.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1996: Predictability—A problem partly solved. Proc. Seminar on Predictability, Reading, United Kingdom, ECMWF, 1–18.

  • Lutsko, N. J., , I. M. Held, , and P. Zurita-Gotor, 2015: Applying the fluctuation–dissipation theorem to a two-layer model of quasigeostrophic turbulence. J. Atmos. Sci., 72, 31613177, doi:10.1175/JAS-D-14-0356.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2015: Statistical energy conservation principle for inhomogeneous turbulent dynamical systems. Proc. Natl. Acad. Sci. USA, 112, 89378941, doi:10.1073/pnas.1510465112.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2016: Introduction to Turbulent Dynamical Systems for Complex Systems. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Vol. 5, Springer International Publishing, 91 pp., doi:10.1007/978-3-319-32217-9.

  • Majda, A. J., , and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 564 pp.

  • Majda, A. J., , and X. Wang, 2010: Linear response theory for statistical ensembles in complex systems with time-periodic forcing. Commun. Math. Sci., 8, 145172, doi:10.4310/CMS.2010.v8.n1.a8.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and B. Gershgorin, 2011: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA, 108, 12 59912 604, doi:10.1073/pnas.1108132108.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and D. Qi, 2016: Improving prediction skill of imperfect turbulent models through statistical response and information theory. J. Nonlinear Sci., 26, 233285, doi:10.1007/s00332-015-9274-5.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , R. V. Abramov, , and M. J. Grote, 2005: Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monogr. Ser., Vol. 25, American Mathematical Society, 133 pp.

  • Majda, A. J., , B. Gershgorin, , and Y. Yuan, 2010: Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice. J. Atmos. Sci., 67, 11861201, doi:10.1175/2009JAS3264.1.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., , and I. M. Held, 1996: The diffusive approximation for eddy fluxes in baroclinically unstable jets. J. Atmos. Sci., 53, 12621272, doi:10.1175/1520-0469(1996)053<1262:TDAFEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 400 pp.

  • Sapsis, T. P., , and A. J. Majda, 2013a: Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems. Proc. Natl. Acad. Sci. USA, 110, 13 70513 710, doi:10.1073/pnas.1313065110.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T. P., , and A. J. Majda, 2013b: A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems. Physica D, 252, 3445, doi:10.1016/j.physd.2013.02.009.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., , and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231, doi:10.1175/JAS4000.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , and B. L. Hua, 1987: Oceanic quasi-geostrophic turbulence forced by stochastic wind fluctuations. J. Phys. Oceanogr., 17, 397411, doi:10.1175/1520-0485(1987)017<0397:OQGTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 769 pp.

  • Zurita-Gotor, P., , J. Blanco-Fuentes, , and E. P. Gerber, 2014: The impact of baroclinic eddy feedback on the persistence of jet variability in the two-layer model. J. Atmos. Sci., 71, 410429, doi:10.1175/JAS-D-13-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 11
PDF Downloads 28 28 4

Low-Dimensional Reduced-Order Models for Statistical Response and Uncertainty Quantification: Two-Layer Baroclinic Turbulence

View More View Less
  • 1 Department of Mathematics, and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
© Get Permissions
Restricted access

Abstract

Accurate uncertainty quantification for the mean and variance about forced responses to general external perturbations in the climate system is an important subject in understanding Earth’s atmosphere and ocean in climate change science. A low-dimensional reduced-order method is developed for uncertainty quantification and capturing the statistical sensitivity in the principal model directions with largest variability and in various regimes in two-layer quasigeostrophic turbulence. Typical dynamical regimes tested here include the homogeneous flow in the high latitudes and the anisotropic meandering jets in the low latitudes and/or midlatitudes. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. Here a statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. The reduced-order model displays uniformly high prediction skill for the mean and variance response to general forcing for both homogeneous flow and anisotropic zonal jets in the first 102 dominant low-wavenumber modes, where only about 0.15% of the total spectral modes are resolved, compared with the full model resolution of 2562 horizontal modes.

Corresponding author address: Di Qi, Department of Mathematics, and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, 251 Mercer St., New York University, New York, NY 10012. E-mail: qidi@cims.nyu.edu; jonjon@cims.nyu.edu

Abstract

Accurate uncertainty quantification for the mean and variance about forced responses to general external perturbations in the climate system is an important subject in understanding Earth’s atmosphere and ocean in climate change science. A low-dimensional reduced-order method is developed for uncertainty quantification and capturing the statistical sensitivity in the principal model directions with largest variability and in various regimes in two-layer quasigeostrophic turbulence. Typical dynamical regimes tested here include the homogeneous flow in the high latitudes and the anisotropic meandering jets in the low latitudes and/or midlatitudes. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. Here a statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. The reduced-order model displays uniformly high prediction skill for the mean and variance response to general forcing for both homogeneous flow and anisotropic zonal jets in the first 102 dominant low-wavenumber modes, where only about 0.15% of the total spectral modes are resolved, compared with the full model resolution of 2562 horizontal modes.

Corresponding author address: Di Qi, Department of Mathematics, and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, 251 Mercer St., New York University, New York, NY 10012. E-mail: qidi@cims.nyu.edu; jonjon@cims.nyu.edu
Save