• Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458, doi:10.1175/2009MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and L. K. Shay, 1998: Air–sea interaction processes relevant to tropical cyclone intensity change. Preprints, Symp. on Tropical Cyclone Intensity Change, Phoenix, AZ, Amer. Meteor. Soc., 161168.

  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalance aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, doi:10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Heng, J., and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, doi:10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, doi:10.1175/JAS3745.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211, doi:10.1175/JAS3746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and D. S. Nolan, 2014: Reply to “Comments on ‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’” J. Atmos. Sci., 71, 46924704, doi:10.1175/JAS-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, doi:10.1175/JAS-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, doi:10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanger, N. T., M. T. Montgomery, R. K. Smith, and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi from 24 to 27 September. Mon. Wea. Rev., 142, 328, doi:10.1175/MWR-D-12-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and J. D. Kepert, 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192, doi:10.1175/2007MWR2296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: Comments on “Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification.” J. Atmos. Sci., 73, 51015103, doi:10.1175/JAS-D-16-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. V. Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, doi:10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 4
PDF Downloads 19 19 3

Reply to “Comments on ‘Nonlinear Response of a Tropical Cyclone Vortex to Prescribed Eyewall Heating with and without Surface Friction in TCM4: Implications for Tropical Cyclone Intensification’”

View More View Less
  • 1 Pacific Typhoon Research Center, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Pacific Typhoon Research Center, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Yuqing Wang, IPRC/SOEST, University of Hawai‘i at Mānoa, Room 404A, POST Bldg., 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-15-0164.1.

© 2016 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Yuqing Wang, IPRC/SOEST, University of Hawai‘i at Mānoa, Room 404A, POST Bldg., 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-15-0164.1.

Save