Numerical Modeling of Multiscale Dynamics at a High Reynolds Number: Instabilities, Turbulence, and an Assessment of Ozmidov and Thorpe Scales

David C. Fritts GATS/Boulder, Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
,
Ling Wang GATS/Boulder, Boulder, Colorado

Search for other papers by Ling Wang in
Current site
Google Scholar
PubMed
Close
,
Marvin A. Geller Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, Stony Brook, New York

Search for other papers by Marvin A. Geller in
Current site
Google Scholar
PubMed
Close
,
Dale A. Lawrence Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Dale A. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Joe Werne NWRA, Boulder, Colorado

Search for other papers by Joe Werne in
Current site
Google Scholar
PubMed
Close
, and
Ben B. Balsley Cooperative Institute for Research in Environment Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ben B. Balsley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A high–Reynolds number direct numerical simulation (DNS) is employed to explore the instability and turbulence dynamics accompanying an idealized multiscale flow that approximates such environments observed throughout the atmosphere. The DNS describes the superposition of a stable gravity wave (GW) and a stable, oscillatory, finescale shear flow that together yield significant wave–wave interactions, GW breaking, Kelvin–Helmholtz instabilities (KHI), fluid intrusions, and turbulence. Larger-scale GW breaking and KHI events account for the strongest turbulence intensities, with intrusions competing with KHI and GW breaking at smaller spatial scales and later times. These dynamics drive a series of sheet-and-layer structures in the velocity, stability, and dissipation fields that persist for many buoyancy periods. Measures of local turbulence intensities include energy dissipation rates, Ozmidov and Thorpe scales (LO and LT, respectively), and a buoyancy Reynolds number sufficient to ensure sustained, strong turbulence events. These exhibit significant variability between and within instability events of different types. The Ozmidov and Thorpe scales for individual events are employed to assess variations of their ratio, C = LO/LT, with time. The value of C is highly variable with event type and time but typically increases with time because significant fluid overturning most often precedes turbulence. The value of C determined for the entire domain varies from 0 prior to instability to approximately 2 or larger at late times, with minima (maxima) prior to (following) significant instability and turbulence events. This appears to preclude an assumption that C is constant in stratified flows, except perhaps as an event average that may depend on event type.

Denotes Open Access content.

Deceased.

Corresponding author address: D. C. Fritts, GATS/Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com

Abstract

A high–Reynolds number direct numerical simulation (DNS) is employed to explore the instability and turbulence dynamics accompanying an idealized multiscale flow that approximates such environments observed throughout the atmosphere. The DNS describes the superposition of a stable gravity wave (GW) and a stable, oscillatory, finescale shear flow that together yield significant wave–wave interactions, GW breaking, Kelvin–Helmholtz instabilities (KHI), fluid intrusions, and turbulence. Larger-scale GW breaking and KHI events account for the strongest turbulence intensities, with intrusions competing with KHI and GW breaking at smaller spatial scales and later times. These dynamics drive a series of sheet-and-layer structures in the velocity, stability, and dissipation fields that persist for many buoyancy periods. Measures of local turbulence intensities include energy dissipation rates, Ozmidov and Thorpe scales (LO and LT, respectively), and a buoyancy Reynolds number sufficient to ensure sustained, strong turbulence events. These exhibit significant variability between and within instability events of different types. The Ozmidov and Thorpe scales for individual events are employed to assess variations of their ratio, C = LO/LT, with time. The value of C is highly variable with event type and time but typically increases with time because significant fluid overturning most often precedes turbulence. The value of C determined for the entire domain varies from 0 prior to instability to approximately 2 or larger at late times, with minima (maxima) prior to (following) significant instability and turbulence events. This appears to preclude an assumption that C is constant in stratified flows, except perhaps as an event average that may depend on event type.

Denotes Open Access content.

Deceased.

Corresponding author address: D. C. Fritts, GATS/Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com
Save
  • Achatz, U., 2005: On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids, 17, 094107, doi:10.1063/1.2046709.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., 2007: The primary nonlinear dynamics of modal and nonmodal perturbations of monochromatic inertia–gravity waves. J. Atmos. Sci., 64, 7495, doi:10.1175/JAS3827.1.

    • Search Google Scholar
    • Export Citation
  • Andreassen, O., P. O. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 2746, doi:10.1017/S0022112098001645.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., M. L. Jensen, and R. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125, doi:10.1023/A:1000812511429.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60, 24962508, doi:10.1175/1520-0469(2003)060<2496:EGITNB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., D. A. Lawrence, R. F. Woodman, and D. C. Fritts, 2013: Fine-scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0-1,300 m) over the south Peruvian coast. Bound.-Layer Meteor., 147, 165–178, doi:10.1007/s10546-012-9774-x.

    • Search Google Scholar
    • Export Citation
  • Baumgarten, G., and D. C. Fritts, 2014: Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. J. Geophys. Res. Atmos., 119, 93249337, doi:10.1002/2014JD021832.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C. P., and W. R. Peltier, 2000: The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech., 413, 147, doi:10.1017/S0022112000008284.

    • Search Google Scholar
    • Export Citation
  • Chuda, T., R. Kimura, and H. Niino, 2007: Vertical fine structures of temperature and water vapor in the free atmosphere. J. Meteor. Soc. Japan, 85, 583597, doi:10.2151/jmsj.85.583.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and G. Matheou, 2012: Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech., 696, 434467, doi:10.1017/jfm.2012.59.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833852, doi:10.1175/2007JTECHA992.1.

    • Search Google Scholar
    • Export Citation
  • Cot, C., and J. Barat, 1990: A “universal” wave spectrum for atmospheric temperature and velocity fluctuations in the stratosphere? Geophys. Res. Lett., 17, 15771580, doi:10.1029/GL017i010p01577.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., 1969: A quantitative treatment of solar ‘seeing’, I. Sol. Phys., 7, 122143, doi:10.1007/BF00148409.

  • Coulman, C. E., 1973: Vertical profiles of small-scale temperature structure in the atmosphere. Bound.-Layer Meteor., 4, 169177, doi:10.1007/BF02265230.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., J. Vernin, and A. Fuchs, 1995: Optical seeing mechanism of formation of thin turbulent laminae in the atmosphere. Appl. Opt., 34, 54615474, doi:10.1364/AO.34.005461.

    • Search Google Scholar
    • Export Citation
  • Coy, L., and D. C. Fritts, 1988: Gravity wave heat fluxes: A Lagrangian approach. J. Atmos. Sci., 45, 17701780, doi:10.1175/1520-0469(1988)045<1770:GWLFAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dalaudier, F., C. Sidi, M. Crochet, and J. Vernin, 1994: Direct evidence of “sheets” in the atmospheric temperature field. J. Atmos. Sci., 51, 237248, doi:10.1175/1520-0469(1994)051<0237:DEOITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91, 27422748, doi:10.1029/JD091iD02p02742.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2000: The mixing transition in turbulent flows. J. Fluid Mech., 409, 6998, doi:10.1017/S0022112099007946.

  • Drazin, P. G., and W. H. Reid, 2004: Hydrodynamic Stability. 2nd ed. Cambridge University Press, 628 pp.

  • Eaton, F., S. A. McLaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30, 7588, doi:10.1029/94RS01937.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 1999: Isentropic advection by gravity waves: Quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys. Res. Lett., 26, 201204, doi:10.1029/1998GL900283.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. J. Dunkerton, 1985: Fluxes of heat and constituents due to convectively unstable gravity waves. J. Atmos. Sci., 42, 549556, doi:10.1175/1520-0469(1985)042<0549:FOHACD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277, doi:10.1029/RS020i006p01247.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and VanZandt, 1987: Effects of Doppler shifting on the frequency spectra of atmospheric gravity waves. J. Geophys. Res., 92, 97239732, doi:10.1029/JD092iD08p09723.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50, 36853694, doi:10.1175/1520-0469(1993)050<3685:SEOGWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and L. Wang, 2013: Gravity wave–fine structure interactions. Part II: Energy dissipation evolutions, statistics, and implications. J. Atmos. Sci., 70, 37353755, doi:10.1175/JAS-D-13-059.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. Arendt, and O. Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367, 4765, doi:10.1017/S0022112098001633.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2004: Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys. Res. Lett., 31, L24S06, doi:10.1029/2003GL019389.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009a: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148, doi:10.1175/2008JAS2726.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009b: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure, and anisotropy. J. Atmos. Sci., 66, 11491171, doi:10.1175/2008JAS2727.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, and J. Werne, 2013: Gravity wave–fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. J. Atmos. Sci., 70, 37103733, doi:10.1175/JAS-D-13-055.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., G. Baumgarten, K. Wan, J. A. Werne, and T. Lund, 2014: Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 2. Modeling and interpretation of observations. J. Geophys. Res. Atmos., 119, 93599375, doi:10.1002/2014JD021833.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1999: Velcro measurements of turbulent kinetic energy dissipation rate. J. Atmos. Oceanic Technol., 16, 19731993, doi:10.1175/1520-0426(1999)016<1973:VMOTKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 336 pp.

  • Gossard, E. E., J. E. Gaynor, R. J. Zamora, and W. D. Neff, 1985: Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J. Atmos. Sci., 42, 21562169, doi:10.1175/1520-0469(1985)042<2156:FOESLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haack, A., M. Gerding, and F.-J. Lübken, 2014: Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J. Geophys. Res. Atmos., 119, 10 60510 618, doi:10.1002/2013JD021008.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., A. Z. Liu, R. L. Walterscheid, and R. J. Rudy, 2005: Maui Mesosphere and Lower Thermosphere (Maui MALT) observations of the evolution of Kelvin-Helmholtz billows formed near 86 km altitude. J. Geophys. Res., 110, D09S10, doi:10.1029/2003JD003908.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., and Coauthors, 2014: The lifecycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012. J. Geophys. Res. Atmos., 119, 88728898, doi:10.1002/2014JD021726.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 61, 125, doi:10.1080/03091929108229035.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. A., and B. B. Balsley, 2013: High-resolution atmospheric sensing of multiple atmospheric variables using the DataHawk small airborne measurement system. J. Atmos. Oceanic Technol., 30, 23522366, doi:10.1175/JTECH-D-12-00089.1.

    • Search Google Scholar
    • Export Citation
  • Lehmacher, G. A., L. Guo, E. Kudeki, P. M. Reyes, A. Akgiray, and J. L. Chau, 2007: High-resolution observations of mesospheric layers with the Jicamarca VHF radar. Adv. Space Res., 40, 734743, doi:10.1016/j.asr.2007.05.059.

    • Search Google Scholar
    • Export Citation
  • Lombard, P. N., and J. J. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8, 32713287, doi:10.1063/1.869117.

    • Search Google Scholar
    • Export Citation
  • Love, P. T., and M. A. Geller, 2012: Research using high (and higher) resolution radiosonde data. Eos, Trans. Amer. Geophys. Union, 93, 337338, doi:10.1029/2012EO350001.

    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102, 13 44113 456, doi:10.1029/97JD00853.

    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., W. Hillert, G. Lehmacher, and U. von Zahn, 1993: Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere. J. Geophys. Res., 98, 20 36920 384, doi:10.1029/93JD02055.

    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., M. Rapp, and P. Hoffmann, 2002: Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. J. Geophys. Res., 107, 4273, doi:10.1029/2001JD000915.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, F. Dalaudier, and C. Sidi, 1995: Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations. Radio Sci., 30, 10031025, doi:10.1029/95RS00713.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, C. Hanuise, M. Yamamoto, and S. Fukao, 1999: On the interpretation of the layered structures detected by mesosphere-stratosphere-troposphere radars in dual frequency domain interferometry mode. Radio Sci., 34, 10771083, doi:10.1029/1999RS900045.

    • Search Google Scholar
    • Export Citation
  • Luce, H., S. Fukao, F. Dalaudier, and M. Crochet, 2002: Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques. J. Atmos. Sci., 59, 28852896, doi:10.1175/1520-0469(2002)059<2885:SMEONT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • McIntyre, M. E., 1989: On dynamics and transport near the polar mesopause in summer. J. Geophys. Res., 94, 14 61714 628, doi:10.1029/JD094iD12p14617.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1990: Middle atmosphere dynamics and transport: Some current challenges to our understanding. Dynamics, Transport, and Photochemistry in the Middle Atmosphere of the Southern Hemisphere, A. O’Neill, Ed., Kluwer, 1–18.

  • Moin, P., and K. Mahesh, 1998: Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech., 30, 539–578.

  • Monin, A. S., and A. M. Yaglom, 2007: Mechanics of Turbulence. Vol. 1, Statistical Fluid Mechanics, Dover Publications, 784 pp.

  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 101, doi:10.1029/96JC00507.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and C. Wode, 1998: First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere. J. Atmos. Sci., 55, 28932906, doi:10.1175/1520-0469(1998)055<2893:FISEFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., R. M. Worthington, R. G. Frehlich, M. L. Jensen, and B. B. Balsley, 2000: Turbulence spectra and vertical profiles of energy dissipation rate and temperature structure parameter in thin turbulent layers embedded in a stably stratified environment. Preprints, 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc., P7.3. [Available online at https://ams.confex.com/ams/AugAspen/techprogram/paper_14804.htm.]

  • Nastrom, G. D., and F. D. Eaton, 2001: Persistent layers of enhanced C2 N in the lower stratosphere from radar. Radio Sci., 36, 137149, doi:10.1029/2000RS002318.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfrommer, T., P. Hickson, and C.-Y. She, 2009: A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies. Geophys. Res. Lett., 35, L15831, doi:10.1029/2009GL038802.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Rapp, M., B. Strelnikov, A. Müllemann, F.-J. Lübken, and D. C. Fritts, 2004: Turbulence measurements implications for gravity wave dissipation during the MaCWAVE/MIDAS rocket program. Geophys. Res. Lett., 31, L24S07, doi:10.1029/2003GL019325.

    • Search Google Scholar
    • Export Citation
  • Reitar, E. R., 1969: The nature of clear air turbulence: A review. Clear Air Turbulence and Its Detection, Y.-H. Pao and A. Goldburg, Eds., Springer, 7–33.

  • Schneider, A., M. Gerding, and F.-J. Lübken, 2015: Comparing turbulent parameters obtained from LITOS and radiosonde measurements. Atmos. Chem. Phys., 15, 21592166, doi:10.5194/acp-15-2159-2015.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410, doi:10.1175/1520-0469(1987)044<1404:EFASSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, doi:10.1063/1.870385.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sonmor, L. J., and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54, 26552680, doi:10.1175/1520-0469(1997)054<2655:TAUTOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96, 297324, doi:10.1016/0021-9991(91)90238-G.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2003: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Sun, J., S. P. Burns, D. H. Lenschow, R. Banta, and R. Newsom, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, doi:10.1023/A:1019969131774.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, and S. P. Burns, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., T. Inoue, D. C. Fritts, T. E. VanZandt, S. Kato, T. Sato, and S. Fukao, 1989: MST radar observations of a saturated gravity wave spectrum. J. Atmos. Sci., 46, 24402447, doi:10.1175/1520-0469(1989)046<2440:MROOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1995: The instability of internal gravity waves to localized disturbances. Ann. Geophys., 13, 196210, doi:10.1007/s00585-995-0196-7.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, doi:10.1029/GL009i005p00575.

    • Search Google Scholar
    • Export Citation
  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26, 439442, doi:10.1029/1999GL900022.

    • Search Google Scholar
    • Export Citation
  • Werne, J., and D. C. Fritts, 2001: Anisotropy in a stratified shear layer. Phys. Chem. Earth, 26B, 263268, doi:10.1016/S1464-1909(01)00004-1.

    • Search Google Scholar
    • Export Citation
  • Werne, J., T. Lund, B. A. Pettersson-Reif, P. Sullivan, and D. C. Fritts, 2005: CAP phase II simulations for the air force HEL-JTO Project: Atmospheric turbulence simulations on NAVO’s 3000-processor IBM P4+ and ARL’s 2000-processor Intel Xeon EM64T cluster. Proceedings of the HPCMP Users Group Conference, IEEE, 100–111, doi:10.1109/DODUGC.2005.16.

  • Wesson, J. C., and M. C. Gregg, 1994: Mixing in the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 98479878, doi:10.1029/94JC00256.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., E. G. Pavelin, R. Busen, J. Hacker, and S. Vosper, 2003: Airborne measurements of gravity wave breaking at the tropopause. Geophys. Res. Lett., 30, 2070, doi:10.1029/2003GL018207.

    • Search Google Scholar
    • Export Citation
  • Wroblewski, D. E., O. R. Cote, J. M. Hacker, and R. J. Dobosy, 2007: Cliff–ramp patterns and Kelvin–Helmholtz billows in stably stratified shear flow in the upper troposphere: Analysis of aircraft measurements. J. Atmos. Sci., 64, 25212539, doi:10.1175/JAS3956.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., H. Fukunishi, T. Nakamura, and T. Tsuda, 2001: Breakdown of small-scale quasi-stationary gravity wave and transition to turbulence observed in OH airglow. Geophys. Res. Lett., 28, 21532156, doi:10.1029/2000GL011945.

    • Search Google Scholar
    • Export Citation
  • Zikanov, O., 2011: Essential Computational Fluid Dynamics. Wiley, 320 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 995 700 25
PDF Downloads 281 73 3