Determination of Convective Boundary Layer Entrainment Fluxes, Dissipation Rates, and the Molecular Destruction of Variances: Theoretical Description and a Strategy for Its Confirmation with a Novel Lidar System Synergy

Volker Wulfmeyer Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Volker Wulfmeyer in
Current site
Google Scholar
PubMed
Close
,
Shravan Kumar Muppa Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Search for other papers by Shravan Kumar Muppa in
Current site
Google Scholar
PubMed
Close
,
Andreas Behrendt Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Search for other papers by Andreas Behrendt in
Current site
Google Scholar
PubMed
Close
,
Eva Hammann Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Search for other papers by Eva Hammann in
Current site
Google Scholar
PubMed
Close
,
Florian Späth Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Search for other papers by Florian Späth in
Current site
Google Scholar
PubMed
Close
,
Zbigniew Sorbjan Physics Department, Marquette University, Milwaukee, Wisconsin

Search for other papers by Zbigniew Sorbjan in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
, and
R. Michael Hardesty NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric variables in the convective boundary layer (CBL), which are critical for turbulence parameterizations in weather and climate models, are assessed. These include entrainment fluxes, higher-order moments of humidity, potential temperature, and vertical wind, as well as dissipation rates. Theoretical relationships between the integral scales, gradients, and higher-order moments of atmospheric variables, fluxes, and dissipation rates are developed mainly focusing on the entrainment layer (EL) at the top of the CBL. These equations form the starting point for tests of and new approaches in CBL turbulence parameterizations. For the investigation of these relationships, an observational approach using a synergy of ground-based water vapor, temperature, and wind lidar systems is proposed. These systems measure instantaneous vertical profiles with high temporal and spatial resolution throughout the CBL including the EL. The resolution of these systems permits the simultaneous measurement of gradients and fluctuations of these atmospheric variables. For accurate analyses of the gradients and the shapes of turbulence profiles, the lidar system performances are very important. It is shown that each lidar profile can be characterized very well with respect to bias and system noise and that the constant bias has negligible effect on the measurement of turbulent fluctuations. It is demonstrated how different gradient relationships can be measured and tested with the proposed lidar synergy within operational measurements or new field campaigns. Particularly, a novel approach is introduced for measuring the rate of destruction of humidity and temperature variances, which is an important component of the variance budget equations.

Denotes Open Access content.

Corresponding author address: Volker Wulfmeyer, Institute of Physics and Meteorology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany. E-mail: volker.wulfmeyer@uni-hohenheim.de

Abstract

Atmospheric variables in the convective boundary layer (CBL), which are critical for turbulence parameterizations in weather and climate models, are assessed. These include entrainment fluxes, higher-order moments of humidity, potential temperature, and vertical wind, as well as dissipation rates. Theoretical relationships between the integral scales, gradients, and higher-order moments of atmospheric variables, fluxes, and dissipation rates are developed mainly focusing on the entrainment layer (EL) at the top of the CBL. These equations form the starting point for tests of and new approaches in CBL turbulence parameterizations. For the investigation of these relationships, an observational approach using a synergy of ground-based water vapor, temperature, and wind lidar systems is proposed. These systems measure instantaneous vertical profiles with high temporal and spatial resolution throughout the CBL including the EL. The resolution of these systems permits the simultaneous measurement of gradients and fluctuations of these atmospheric variables. For accurate analyses of the gradients and the shapes of turbulence profiles, the lidar system performances are very important. It is shown that each lidar profile can be characterized very well with respect to bias and system noise and that the constant bias has negligible effect on the measurement of turbulent fluctuations. It is demonstrated how different gradient relationships can be measured and tested with the proposed lidar synergy within operational measurements or new field campaigns. Particularly, a novel approach is introduced for measuring the rate of destruction of humidity and temperature variances, which is an important component of the variance budget equations.

Denotes Open Access content.

Corresponding author address: Volker Wulfmeyer, Institute of Physics and Meteorology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany. E-mail: volker.wulfmeyer@uni-hohenheim.de
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program—To predict reliably what increased greenhouse gases will do to global climate, we have to understand the crucial role of clouds. Phys. Today, 56, 3846, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Angevine, W., S. Avery, and G. Kok, 1993: Virtual heat flux measurements from a boundary-layer profiler-RASS compared to aircraft measurements. J. Appl. Meteor., 32, 19011907, doi:10.1175/1520-0450(1993)032<1901:VHFMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., J. Fruntke, and R. Engelmann, 2010: Updraft and downdraft characterization with Doppler lidar: Cloud-free versus cumuli-topped mixed layer. Atmos. Chem. Phys., 10, 78457858, doi:10.5194/acp-10-7845-2010.

    • Search Google Scholar
    • Export Citation
  • Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79, 131175, doi:10.1007/BF00120078.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, 2009: Three-dimensional observations of atmospheric humidity with a scanning differential absorption Lidar. Remote Sensing of Clouds and the Atmosphere XIV, R. H. Picard, K. Schäfer, and A. Comeron et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7475), 74750L, doi:10.1117/12.835143.

  • Behrendt, A., and Coauthors, 2011: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart. J. Roy. Meteor. Soc., 137, 81100, doi:10.1002/qj.758.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., E. Hammann, S. K. Muppa, S. Pal, and V. Wulfmeyer, 2015: Profiles of second- to forth-order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar. Atmos. Chem. Phys., 15, 54855500, doi:10.5194/acp-15-5485-2015.

    • Search Google Scholar
    • Export Citation
  • Cohn, S., and W. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, doi:10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations. J. Atmos. Sci., 63, 11511178, doi:10.1175/JAS3691.1.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Guichard, J.-L. Redelsperger, C. Kiemle, V. Masson, J.-P. Lafore, and C. Flamant, 2005: Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations. Quart. J. Roy. Meteor. Soc., 131, 26652693, doi:10.1256/qj.04.167.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Guichard, V. Masson, and J.-L. Redelsperger, 2007: Negative water vapour skewness and dry tongues in the convective boundary layer: Observations and large-eddy simulation budget analysis. Bound.-Layer Meteor., 123, 269294, doi:10.1007/s10546-006-9140-y.

    • Search Google Scholar
    • Export Citation
  • Crum, T., and R. Stull, 1987: Field measurements of the amount of surface layer air versus height in the entrainment zone. J. Atmos. Sci., 44, 27432753, doi:10.1175/1520-0469(1987)044<2743:FMOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crum, T., R. Stull, and E. Eloranta, 1987: Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J. Climate Appl. Meteor., 26, 774788, doi:10.1175/1520-0450(1987)026<0774:CLAAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1970: A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn., 1, 377–410, doi:10.1080/03091927009365780.

  • Dethloff, K., C. Abegg, A. Rinke, I. Hebestadt, and V. F. Romanov, 2001: Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model. Tellus, 53A, 126, doi:10.1034/j.1600-0870.2001.01073.x.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Atmospheric and Oceanographic Sciences Library, Vol. 40, Springer, 174 pp.

  • Fedorovich, E., R. Conzemius, and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61, 281295, doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

  • Frehlich, R., and L. Cornman, 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19, 355366, doi:10.1175/1520-0426-19.3.355.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., S. M. Hannon, and S. W. Henderson, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86, 233256, doi:10.1023/A:1000676021745.

    • Search Google Scholar
    • Export Citation
  • Garcia, J. R., and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 71, 19351955, doi:10.1175/JAS-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Giez, A., G. Ehret, R. L. Schwiesow, K. J. Davis, and D. H. Lenschow, 1999: Water vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol., 16, 237250, doi:10.1175/1520-0426(1999)016<0237:WVFMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515, doi:10.1023/A:1002452529672.

    • Search Google Scholar
    • Export Citation
  • Hammann, E., A. Behrendt, F. Le Mounier, and V. Wulfmeyer, 2015: Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment. Atmos. Chem. Phys., 15, 28672881, doi:10.5194/acp-15-2867-2015.

    • Search Google Scholar
    • Export Citation
  • Hechtel, L., C.-H. Moeng, and R. Stull, 1990: Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment. J. Atmos. Sci., 47, 17211741, doi:10.1175/1520-0469(1990)047<1721:TEONSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting Model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, doi:10.1175/2008MWR2220.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643, doi:10.1002/qj.413.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2013: Dry and moist convection in the boundary layer over the Black Forest—A combined analysis of in situ and remote sensing data. Meteor. Z., 22, 445461, doi:10.1127/0941-2948/2013/0417.

    • Search Google Scholar
    • Export Citation
  • Kameyama, S., T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, 2007: Compact all-fiber pulsed coherent Doppler lidar system for wind sensing. Appl. Opt., 46, 19531962, doi:10.1364/AO.46.001953.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., A. Inagaki, M. O. Letzel, S. Raasch, and T. Watanabe, 2004: LES study of the energy imbalance problem with eddy covariance fluxes. Bound.-Layer Meteor., 110, 381404, doi:10.1023/B:BOUN.0000007225.45548.7a.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, A. Giez, K. Davis, D. Lenschow, and S. P. Oncley, 1997: Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102, 29 189–29 203, doi:10.1029/97JD01112.

  • Kiemle, C., and Coauthors, 2007: Latent heat flux profiles from collocated airborne water vapor and wind lidars during IHOP_2002. J. Atmos. Oceanic Technol., 24, 627639, doi:10.1175/JTECH1997.1.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. Di Girolamo, 2011: Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars. Quart. J. Roy. Meteor. Soc., 137, 190203, doi:10.1002/qj.757.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., S.-U. Park, and C.-H. Moeng, 2003: Entrainment processes in the convective boundary layer with varying wind shear. Bound.-Layer Meteor., 108, 221245, doi:10.1023/A:1024170229293.

    • Search Google Scholar
    • Export Citation
  • LeMone, M., 2002: Convective boundary layer. Encyclopedia of Atmospheric Sciences, 1st ed. J. Holton and J. Curry, Eds., Academic Press, 250–257.

  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11, 661673, doi:10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., V. Wulfmeyer, and C. Senff, 2000: Measuring second-through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347, doi:10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., M. Lothon, S. D. Mayor, P. P. Sullivan, and G. Canut, 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123, doi:10.1007/s10546-011-9615-3.

    • Search Google Scholar
    • Export Citation
  • Linné, H., B. Hennemuth, J. Bösenberg, and K. Ertel, 2007: Water vapour flux profiles in the convective boundary layer. Theor. Appl. Climatol., 87, 201211, doi:10.1007/s00704-005-0191-7.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, doi:10.1175/2008JAMC2060.1.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536, doi:10.1007/s10546-006-9077-1.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2009: Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Bound.-Layer Meteor., 132, 205226, doi:10.1007/s10546-009-9398-y.

    • Search Google Scholar
    • Export Citation
  • Maronga, B., and S. Raasch, 2013: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound.-Layer Meteor., 146, 1744, doi:10.1007/s10546-012-9748-z.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377–392, doi:10.1175/BAMS-D-11-00218.1.

  • Matuura, M., Y. Masuda, H. Inuki, S. Kato, S. Fukao, T. Sato, and T. Tsuda, 1986: Radio acoustic measurement of temperature profile in the troposphere and stratosphere. Nature, 323, 426428, doi:10.1038/323426a0.

    • Search Google Scholar
    • Export Citation
  • Mead, J., G. Hopcraft, S. Frasier, B. Pollard, C. Cherry, D. Schaubert, and R. McIntosh, 1998: A volume-imaging radar wind profiler for atmospheric boundary layer turbulence studies. J. Atmos. Oceanic Technol., 15, 849859, doi:10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milovac, J., K. Warrach-Sagi, J. Ingwersen, A. Behrendt, F. Späth, V. Wulfmeyer, and H. D. Wizemann, 2014: Sensitivity of the WRF model to boundary layer and land surface parameterizations: Comparisons with differential absorption lidar and eddy covariance measurements. 21st Symp. on Boundary Layers and Turbulence, Leeds, United Kingdom, Amer. Meteor. Soc., 26. [Available online at https://ams.confex.com/ams/21BLT/webprogram/Paper248146.html.]

  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. Yaglom, 1975: Statistical Fluid Mechanics. Vol. 2, Mechanics of Turbulence, MIT Press, 896 pp.

  • Muppa, S. K., A. Behrendt, F. Späth, V. Wulfmeyer, S. Metzendorf, and A. Riede, 2015: Turbulent humidity fluctuations in the convective boundary layer: Case studies using water vapour differential absorption lidar measurements. Bound.-Layer Meteor., doi:10.1007/s10546-015-0078-9, in press.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and P. Sullivan, 2013: Using large-eddy simulation to investigate intermittency fluxes of clear-air radar reflectivity in the atmospheric boundary layer. Proc. Antennas and Propagation Society Int. Symp. (APSURSI), Orlando, FL, IEEE, 23212322, doi:10.1109/APS.2013.6711819.

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Pal, S., A. Behrendt, and V. Wulfmeyer, 2010: Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics. Ann. Geophys., 28, 825847, doi:10.5194/angeo-28-825-2010.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Philippov, V., C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, 2004: High-energy in-fibre pulse amplification for coherent lidar applications. Opt. Lett., 29, 25902592, doi:10.1364/OL.29.002590.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2013: Super high-resolution mesoscale weather prediction. J. Phys.: Conf. Ser., 454, 012073, doi:10.1088/1742-6596/454/1/012073.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., and Coauthors, 2011: The Rossby Centre Regional Climate model RCA3: Model description and performance. Tellus, 63A, 423, doi:10.1111/j.1600-0870.2010.00478.x.

    • Search Google Scholar
    • Export Citation
  • Senff, C., J. Bösenberg, and G. Peters, 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS. J. Atmos. Oceanic Technol., 11, 8593, doi:10.1175/1520-0426(1994)011<0085:MOWVFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1996: Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. J. Atmos. Sci., 53, 20152024, doi:10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2001: An evaluation of local similarity on the top of the mixed layer based on large-eddy simulations. Bound.-Layer Meteor., 101, 183207, doi:10.1023/A:1019260632125.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2005: Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part I: Free convection. Bound.-Layer Meteor., 116, 467486, doi:10.1007/s10546-005-0907-3.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2006: Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part II: Forced convection. Bound.-Layer Meteor., 119, 5779, doi:10.1007/s10546-005-9014-8.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2009: Improving non-local parameterization of the convective boundary layer. Bound.-Layer Meteor., 130, 5769, doi:10.1007/s10546-008-9331-9.

    • Search Google Scholar
    • Export Citation
  • Späth, F., A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, 2014: High-resolution atmospheric water-vapor measurements with a scanning differential absorption lidar. Atmos. Chem. Phys. Discuss., 14, 29 057–29 099, doi:10.5194/acpd-14-29057-2014.

  • Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, doi:10.5194/amt-8-1073-2015.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Springer, 670 pp.

  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tatarski, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Träumner, K., C. Kottmeier, U. Corsmeier, and A. Wieser, 2011: Convective boundary-layer entrainment: Short review and progress using Doppler lidar. Bound.-Layer Meteor., 141, 369391, doi:10.1007/s10546-011-9657-6.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. Miyamoto, and J. Furumoto, 2001: Estimation of a humidity profile using turbulence echo characteristics. J. Atmos. Oceanic Technol., 18, 12141222, doi:10.1175/1520-0426(2001)018<1214:EOAHPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., W. A. Brewer, R. M. Banta, C. Senff, S. P. Sandberg, D. C. Law, A. M. Weickmann, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, doi:10.1175/2008JTECHA1157.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and J. E. M. Goldsmith, 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, 2002: Automated retrievals of water vapor and aerosol profiles over Oklahoma from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, V. Wulfmeyer, and A. J. Scarino, 2014a: Aircraft evaluation of ground-based Raman lidar water vapor turbulence profiles in convective mixed layers. J. Atmos. Oceanic Technol., 31, 1078–1088, doi:10.1175/JTECH-D-13-00075.1.

  • Turner, D. D., V. Wulfmeyer, L. K. Berg, and J. H. Schween, 2014b: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 151–11 165, doi:10.1002/2014JD022202.

  • Van Zanten, M. C., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56, 813828, doi:10.1175/1520-0469(1999)056<0813:EPICBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waggy, S. B., S. Biringen, and P. Sullivan, 2013: Direct numerical simulation of top-down and bottom-up diffusion in the convective boundary layer. J. Fluid Mech., 724, 581606, doi:10.1017/jfm.2013.130.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999a: Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS. J. Atmos. Sci., 56, 10551076, doi:10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999b: Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results. J. Atmos. Sci., 56, 10771087, doi:10.1175/1520-0469(1999)056<1077:IOHSAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and T. Janjić, 2005: Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar. J. Appl. Meteor., 44, 17231744, doi:10.1175/JAM2296.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and first highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015a: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys., 53, 819–895, doi:10.1002/2014RG000476.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015b: New concepts for studying land-surface-atmosphere feedback based on a new lidar synergy and grey zone simulations. Geophysical Research Abstracts, Vol. 17, Abstract EGU2015-5054. [Available online at http://meetingorganizer.copernicus.org/EGU2015/EGU2015-5054.pdf.]

  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, doi:10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, doi:10.1029/2011JD017080.

  • Zehe, E., and Coauthors, 2014: From response units to functional units: A thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrol. Earth Syst. Sci., 18, 46354655, doi:10.5194/hess-18-4635-2014.

    • Search Google Scholar
    • Export Citation
  • Zhou, M. Y., D. H. Lenschow, B. B. Stankov, J. C. Kaimal, and J. E. Gaynor, 1985: Wave and turbulence structure in a shallow baroclinic convective boundary layer and overlying inversion. J. Atmos. Sci., 42, 4757, doi:10.1175/1520-0469(1985)042<0047:WATSIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1296 408 47
PDF Downloads 1140 365 34