Convective Self-Aggregation and Tropical Cyclogenesis under the Hypohydrostatic Rescaling

William R. Boos Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by William R. Boos in
Current site
Google Scholar
PubMed
Close
,
Alexey Fedorov Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Alexey Fedorov in
Current site
Google Scholar
PubMed
Close
, and
Les Muir Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Les Muir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The behavior of rotating and nonrotating aggregated convection is examined at various horizontal resolutions using the hypohydrostatic, or reduced acceleration in the vertical (RAVE), rescaling. This modification of the equations of motion reduces the scale separation between convective- and larger-scale motions, enabling the simultaneous and explicit representation of both types of flow in a single model without convective parameterization. Without the RAVE rescaling, a dry bias develops when simulations of nonrotating radiative–convective equilibrium are integrated at coarse resolution in domains large enough to permit convective self-aggregation. The rescaling reduces this dry bias, and here it is suggested that the rescaling moistens the troposphere by weakening the amplitude and slowing the group velocity of gravity waves, thus reducing the subsidence drying around aggregated convection. Separate simulations of rotating radiative–convective equilibrium exhibit tropical cyclogenesis; as horizontal resolution is coarsened without the rescaling, the resulting storms intensify more slowly and achieve lower peak intensities. At a given horizontal resolution, using RAVE increases peak storm intensity and reduces the time needed for tropical cyclogenesis—effects here suggested to be caused at least in part by the environmental moistening produced by RAVE. Consequently, the RAVE rescaling has the potential to improve simulations of tropical cyclones and other aggregated convection in models with horizontal resolutions of order 10–100 km.

Corresponding author address: William R. Boos, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. E-mail: billboos@alum.mit.edu

Abstract

The behavior of rotating and nonrotating aggregated convection is examined at various horizontal resolutions using the hypohydrostatic, or reduced acceleration in the vertical (RAVE), rescaling. This modification of the equations of motion reduces the scale separation between convective- and larger-scale motions, enabling the simultaneous and explicit representation of both types of flow in a single model without convective parameterization. Without the RAVE rescaling, a dry bias develops when simulations of nonrotating radiative–convective equilibrium are integrated at coarse resolution in domains large enough to permit convective self-aggregation. The rescaling reduces this dry bias, and here it is suggested that the rescaling moistens the troposphere by weakening the amplitude and slowing the group velocity of gravity waves, thus reducing the subsidence drying around aggregated convection. Separate simulations of rotating radiative–convective equilibrium exhibit tropical cyclogenesis; as horizontal resolution is coarsened without the rescaling, the resulting storms intensify more slowly and achieve lower peak intensities. At a given horizontal resolution, using RAVE increases peak storm intensity and reduces the time needed for tropical cyclogenesis—effects here suggested to be caused at least in part by the environmental moistening produced by RAVE. Consequently, the RAVE rescaling has the potential to improve simulations of tropical cyclones and other aggregated convection in models with horizontal resolutions of order 10–100 km.

Corresponding author address: William R. Boos, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. E-mail: billboos@alum.mit.edu
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, R., J. Strachan, P. L. Vidale, K. Hodges, and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 79667980, doi:10.1175/JCLI-D-12-00749.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boos, W., and Z. Kuang, 2010: Mechanisms of poleward propagating, intraseasonal convective anomalies in cloud system–resolving models. J. Atmos. Sci., 67, 36733691, doi:10.1175/2010JAS3515.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Browning, G., and H.-O. Kreiss, 1986: Scaling and computation of smooth atmospheric motions. Tellus, 38A, 295313, doi:10.1111/j.1600-0870.1986.tb00417.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 16631680, doi:10.1175/JAS-D-13-0155.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130, 933944, doi:10.1256/qj.02.218.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291536, doi:10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K. A., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, doi:10.1175/2008MWR2409.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, doi:10.1002/2013MS000270.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, doi:10.1038/nature08831.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., 2006: Surface-flux-induced tropical cyclogenesis within an axisymmetric atmospheric balanced model. Quart. J. Roy. Meteor. Soc., 132, 26032623, doi:10.1256/qj.06.03.

    • Search Google Scholar
    • Export Citation
  • Garner, S., D. Frierson, I. Held, O. Pauluis, and G. Vallis, 2007: Resolving convection in a global hypohydrostatic model. J. Atmos. Sci., 64, 20612075, doi:10.1175/JAS3929.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228, doi:10.1175/2008JCLI1921.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Khairoutdinov, M., and D. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2010: Aggregated convection and the regulation of tropical climate. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., P2.69. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_168418.htm.]

  • Kiehl, J., J. Hack, G. Bonan, B. Boville, D. Williamson, and P. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, doi:10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 479479, doi:10.1038/ngeo229.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., P. N. Blossey, and C. S. Bretherton, 2005: A new approach for 3D cloud–resolving simulations of large–scale atmospheric circulation. Geophys. Res. Lett., 32, L02809, doi:10.1029/2004GL021024.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and J. C. Knievel, 2005: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J. Atmos. Sci., 62, 34083419, doi:10.1175/JAS3513.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J., and A. MacDonald, 2000: QNH: Mesoscale bounded derivative initialization and winter storm test over complex terrain. Mon. Wea. Rev., 128, 10371051, doi:10.1175/1520-0493(2000)128<1037:QMBDIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227, doi:10.1175/1520-0469(2004)061<2218:EOCGGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, D., W. R. Boos, and Z. Kuang, 2014: Effects of orography and surface heat fluxes on the South Asian summer monsoon. J. Climate, 27, 66476659, doi:10.1175/JCLI-D-14-00138.1.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A., J. Lee, and S. Sun, 2000a: QNH: Design and test of a quasi-nonhydrostatic model for mesoscale weather prediction. Mon. Wea. Rev., 128, 10161036, doi:10.1175/1520-0493(2000)128<1016:QDATOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A., J. Lee, and Y. Xie, 2000b: The use of quasi-nonhydrostatic models for mesoscale weather prediction. J. Atmos. Sci., 57, 24932517, doi:10.1175/1520-0469(2000)057<2493:TUOQNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. L. Holloway Jr., and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580613, doi:10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • McBride, J. L., 1984: Comments on “Simulation of hurricane-type vortices in a general circulation model.” Tellus, 36A, 9293, doi:10.1111/j.1600-0870.1984.tb00227.x.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., M. Zhao, and I. M. Held, 2013: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophys. Res. Lett., 40, 41094114, doi:10.1002/grl.50680.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., M. A. LeMone, M. F. Khairoutdinov, S. K. Krueger, P. A. Bogenschutz, and D. A. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1 (16), doi:10.3894/JAMES.2009.1.16.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, doi:10.1175/JAS-D-11-0257.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, doi:10.2151/sola.2010-019.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, doi:10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923, doi:10.1175/JAS3705.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., D. Frierson, S. Garner, I. Held, and G. Vallis, 2006: The hypohydrostatic rescaling and its impacts on modeling of atmospheric convection. Theor. Comput. Fluid Dyn., 20, 485499, doi:10.1007/s00162-006-0026-x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, doi:10.1002/qj.125.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445, doi:10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 1994: Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 26232630, doi:10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, doi:10.1175/JCLI-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha, 2013: Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions. J. Geophys. Res. Atmos., 118, 77157732, doi:10.1002/jgrd.50606.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. Anderson, and W. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760, doi:10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585599, doi:10.1007/s00382-012-1298-z.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, doi:10.1175/JCLI-D-12-00830.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, doi:10.1175/JAS-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 235 68
PDF Downloads 305 65 15